X
تبلیغات
مهندسان مکانیک

مهندسان مکانیک

مکانیک خودرو

سيستم فرمان(AS (Active Steering 

مزيت اين سيستم دقت و چابكي بيشتر راننده در حين رانندگي و در هر موقعيتي است.

در قلب سيستم جديد AS مجموعه اي از  دنده هاي سياره‌واري وجود دارد كه با ستون فرمان ادغام شده است. در رانندگي با سرعت هاي پايين- مانند حركت در ترافيك شهري، در زمان پارك كردن خودرو و يا حركت در جاده هاي كوهستاني،سيستم AS ميزان زاويه فرمان را افزايش مي دهد. چرخ هاي جلويي به سرعت در مقابل حركات كوچك چرخ فرمان عكس العمل نشان داده و به اين نحو راننده را قادر مي سازد بدون نياز به چرخاندن زياد فرمان از ميان فضاهاي تنگ و باريك به راحتي عبور كند. از ديگر مزاياي اين سيستم، پارك كردن آسان خودرو و افزايش مانور خودرو  است. در سرعت هاي بالاتر و هنگام عبور از پيچ هاي تند، سيستم AS موجب كاهش تغيير در درجه زاويه فرمان مي شود. اين امر به راننده اين امكان را مي دهد تا در سرعت بالا توانايي بيشتري در كنترل فرمان  و نتيجتاً خودرو داشته و موجبات ثبات و راحتي بيشتري را براي وي فراهم آورد.

در صورتي كه خودرو در معرض خطر بي ثباتي باشد، مانند زماني كه از سطوح ناهموار عبور نموده و  مستلزم استفاده مكرر ار ترمز است، مي توان با استفاده از سيستم AS آن را مرتفع نمود. براي مثال، به منظور كاهش انحرافات خطرناك خودرو در اين حالت، سيستم AS مي تواند سريع تر از هر راننده حرفه اي، زاويه فرمان را افزايش دهد. اين سيستم رابطه بين چرخ فرمان و چرخ هاي جلويي را مختل نكرده و بنابراين حتي در مواقعي كه سيستم الكتريكي خودرو به طور كامل از كار مي‌افتد، خودرو در همه شرايط كاملا قابل كنترل خواهد بود. 

سيستم پاششHPI (High Precision Injection)        

 HPI، يا همان سيستم تزريق دقيق و مستقيم بنزين، موجب كارآمدتر شدن فرآيند سوخت و بالا رفتن عملكرد موتور شده و بنابراين شاهد كاهش قابل توجهي در ميزان نرخ مصرف سوخت خواهيم بود.

HPI ، مجموعه اي است كه عملكرد اجرايي ديناميك سوخت را منسجم تر مي كند.

عنصر اصلي تكنولوژي HPI انژكتور Piezo  است كه بين سوپاپ و شمع قرار مي گيرد. داخل انژكتور لايه هايي از كريستال هاي Piezo وجود دارد كه وقتي جريان الكتريسيته از آن ها عبور مي كند به طور يكنواخت منتشر مي شوند. اين امر موجب خروج مخلوطي از هوا و سوخت با فشار 200 bar از سوزن انژكتور (كه به باريكي تار موي انسان است) به محفظه احتراق مي شود.

 

 

ابري مخروطي شكل به اندازه ناخن انگشت شست، بادقت كامل به داخل شمع تزريق شده و به محض تماس با اكسيژن شعله ور مي شود. در مقايسه با سيستم هاي معمولي پاشش، HPI مستلزم مقدار كمي سوخت بوده و از هدر رفتن بنزيني كه به ديواره هاي محفظه احتراق پاشيده مي شود نيز جلوگيري مي كند. 

تاير (RF (Run-Flat 

با وجود تايرهاي RF ،حتي زماني كه باد تاير خالي شده باشد شما مي توانيد به حركت ادامه داده و عملكرد خودرو را در هنگام افت فشار باد در تاير حفظ نماييد. به جاي تعويض تاير در كنار خيابان كه امري ناخوشايند و محسوب ي شود، شما مي توانيد به حركت خود ادامه داده و به راحتي خود را به منزل و يا تعميرگاه برسانيد.

تايرهاي RF زاپاس خود محسوب مي شوند: با وجود ديوارهاي جانبي تقويت شده، تايرها حتي اگر كاملاً از  باد خالي شده باشند، قادر به ادامه عملكرد خود هستند. تركيب فرسايشي مقاوم به گرما كه در ساخت اين نوع تاير به كار گرفته شده است، در برابر افزايش احتمالي گرما مقاومت مي كند. با استفاده از تايرهاي RF شما قادر خواهيد بود با سرعتي بالاتر از 150 كيلومتر در ساعت و بدون تغيير وضعيت محسوس به رانندگي خود ادامه دهيد. در عين حال در وقت خود صرفه جويي كرده و بنابراين استرس كمتري خواهيد داشت، ديگر نيازي به حمل تاير زاپاس هم نداريد و در نتيجه فضاي بيشتري براي حمل بار در اختيار شما قرار مي گيرد. 

سيستم "رانندگي تطبيقي" (Adaptive Drive) تا حد ممكن فشار وارده بر تاير معيوب را كاهش داده و به تايرهاي ديگر انتقال ميدهد. اين نوع تايرها موجب امنيت بيشتر، آسودگي خاطر سرنشين و نيز امكان استفاده از فضاي بيشتر را در خودرو فراهم مي كند.شركت ADAC آلمان"، يعني همان بزرگترين كلوپ اتومبيل در دنيا، از تايرهايRF به عنوان "اولين انقلاب اساسي در طراحي تاير" از زمان به وجود آمدن تايرهاي بادي ياد مي كند.

سيستم ديناميك مؤثر(ED)  در BMW (Efficient Dynamics)

لذت استفاده از هر قطره سوخت، هدف سيستم ED است. با وجود مجموعه اي از فناوري هوشمندانه، BMW قادر است در حالي كه عملكرد ديناميك خودروي شما را افزايش مي دهد، تأثير بسزايي در كاهش مصرف سوخت و توليد گاز CO2 نيز داشته باشد.

هدف از به كارگيري مجموعه اي از تكنولوژي هاي پيشرفته ومبدعانه، كاهش ميزان مصرف سوخت به حداقل ممكن است. برخي از اين تكنولوژي ها در زمينه سوخت، نوع مواد مصرفي در ساختار خودرو، تركيبات مؤثر در كاهش اصطكاكات موجود و آيروديناميك هاي بهبود يافته و نيز مديريت همه جانبه مصرف انرژي به كار رفته اند.

جهت دستيابي به اين اهداف، موتورها ارتقاء يافته اند؛ موتورهاي بنزيني به وسيله فناوري HPI و موتورهاي ديزلي توسط نسل سوم پاشش ريلي (Rail Injection) و مواد سبك كه منجر به كاهش وزن خودرو تا سقف 20 كيلوگرم شده اند مورد بازبيني قرار گرفته اند 

بهبود وضعيت آيروديناميكي خودرو همچون كنترل هواكش خودرو، تايرهاي مقاوم و ... همگي منجر به نتايج مثبتي شده اند كه نتيجه آن عملكرد ديناميكي خودرو با مصرف سوخت كمتر است. BMW مدل i 120 (5 درب) كه 1 ليتر بنزين كمتر از مدل قبلي مصف مي كند و قادر است 1 ثانيه زودترسرعت خود را به 100 كيلومتر بر ساعت برساند، نمونه اي از به گارگيري اين روش هاي بهبود يافته است.

 

 

سيستم روشن و خاموش (سوئيچينگ) اتومات (Auto Start-Stop)

سيستم سوئيچينگ اتوماتيك ASS راهي هوشمندانه جهت ذخيره سازي سوخت است. در اين حالت زماني كه خودرو به طور كامل متوقف شود، مثلاً در زمان توقف پشت چراغ قرمز، موتور  به طور اتوماتيك خاموش و سپس روشن مي شود كه اين امر موجب كاهش مصرف سوخت خودرو مي شود.

اصول اين كار بسيار ساده است: اگر موتور در حال كار نباشد نمي تواند سوخت مصرف كند. بنابراين سيستم اتوماتيك ASS زماني كه نيازي به روشن بودن موتور نيست آن را خاموش مي كند. در مواقعي كه ترافيك سنگين است و شما مجبور هستيد مكرراً ترمز كنيد، به راحتي مي توانيد خودرو را روي دنده آزاد تنظيم كرده و پاي خود را از روي كلاچ برداريد تا سيستم ASS فعال شود؛  در اين صورت شما لوگوي فعال بودن اين سيستم را در صفحه نمايش خودرو مشاهده خواهيد كرد. براي غيرفعال كردن اين حالت كافي است خودروي خود را از حالت آزاد خارج كنيد. سپس به محض اين كه بر روي كلاچ فشار آوريد موتور شروع به كار كرده و شما مي توانيد بدون لحظه اي تأخير به مسير خود ادامه دهيد.

راحت و امنيت راننده در حين رانندگي و در حين استفاده از سيستم ASS دچار مخاطره نمي شود. براي مثال، هنگامي كه دماي موتور از حد معمول بالاتر باشد، يا هواي درون اتاق به وسيله تهويه كننده هوا به دماي مطلوب نرسيده باشد، يا باتري دچار مشكل شده باشد و يا هنگامي كه راننده فرمان را مي چرخاند، اين سيستم عمل نخواهد كرد.

سيستم اتوماتيك ASS به وسيله يك كنترل مركزي هدايت مي شود كه اطلاعات مورد نظر را از حسگرهاي مربوطه( استارت و دينام) دريافت مي كند. براي مثال اگر خودرو شروع به چرخيدن كند، شارژ باتري به شدت افت كرده و يا روي شيشه جلوي خودرو بخار مي نشيند، در نتيجه به منظور حفظ آسايش و امنيت راننده ، كنترل مركزي به طور اتوماتيك موتور را خاموش و دوباره روشن مي كند.

در عين حال، اين سيستم قادر است فرق ميان توقف موقت و دائم را تشخيص دهد؛ اگر كمربند ايمني راننده بسته نباشد و يا درب كاپوت باز باشد اين سيستم عمل نخواهد كرد. البته اگر مايل باشيد مي توانيد با فشار دادن يك دكمه اين سيستم را به طور كامل غيرفعال كنيد.

با استفا مكرر و دائم از اين سيستم، شما شاهد كاهش قابل توجهي در مصرف سوخت و توليد گاز CO2 خواهيد و.

سيستم هشدارگر عيب تاير (TDI (Tyre Defect Indicator

سيستم هشدارگر عيب تاير به محض بروز مشكل در هر كدام از تايرها به شما هشدار مي دهد تا از خرابي بيشتر تاير جلوگيري كنيد و به نوعي ضامن امنيت شما است.

اين سيستم الكترونيكي داراي علامت هشداردهنده اي بر روي پانل علائم است. وقتي باد تاير كم مي شود، شعاع تاير كاهش يافته و در نتيجه سرعت گردش چرخ افزايش مي يابد. سيستم TDI مجهز به حسگرهايي است كه بر ميزان سرعت گردش چرخ و سيستم ترمز ABS نظارت داشته و اطلاعات مربوط به هر كدام از چرخ ها را به طور جداگانه بررسي مي كند. اين بدان معني است كه اين سيستم داراي قابليت تشخيص تفاوت سرعت در هر يك از چرخ ها مي باشد. البته لازم به ذكر است تشخيص كم‌باد بودن  چرخ ها از عهده اين سيستم خارج بوده و بهترين راه براي جلوگيري از هرگونه خطر احتمالي، چك كردن تايرها به طور دائم است

 

 

منبع : سايت تخصصي اموزش راهنمايي و رانندگي(منبع اصلي سايت BMV)

+نوشته شده در دوشنبه ششم دی 1389ساعت19:2توسط سیدمحمدسادات رسول ومسعودصنعتی نژاد | |

 

سيستم فرمان(AS (Active Steering 

مزيت اين سيستم دقت و چابكي بيشتر راننده در حين رانندگي و در هر موقعيتي است.

در قلب سيستم جديد AS مجموعه اي از  دنده هاي سياره‌واري وجود دارد كه با ستون فرمان ادغام شده است. در رانندگي با سرعت هاي پايين- مانند حركت در ترافيك شهري، در زمان پارك كردن خودرو و يا حركت در جاده هاي كوهستاني،سيستم AS ميزان زاويه فرمان را افزايش مي دهد. چرخ هاي جلويي به سرعت در مقابل حركات كوچك چرخ فرمان عكس العمل نشان داده و به اين نحو راننده را قادر مي سازد بدون نياز به چرخاندن زياد فرمان از ميان فضاهاي تنگ و باريك به راحتي عبور كند. از ديگر مزاياي اين سيستم، پارك كردن آسان خودرو و افزايش مانور خودرو  است. در سرعت هاي بالاتر و هنگام عبور از پيچ هاي تند، سيستم AS موجب كاهش تغيير در درجه زاويه فرمان مي شود. اين امر به راننده اين امكان را مي دهد تا در سرعت بالا توانايي بيشتري در كنترل فرمان  و نتيجتاً خودرو داشته و موجبات ثبات و راحتي بيشتري را براي وي فراهم آورد.

در صورتي كه خودرو در معرض خطر بي ثباتي باشد، مانند زماني كه از سطوح ناهموار عبور نموده و  مستلزم استفاده مكرر ار ترمز است، مي توان با استفاده از سيستم AS آن را مرتفع نمود. براي مثال، به منظور كاهش انحرافات خطرناك خودرو در اين حالت، سيستم AS مي تواند سريع تر از هر راننده حرفه اي، زاويه فرمان را افزايش دهد. اين سيستم رابطه بين چرخ فرمان و چرخ هاي جلويي را مختل نكرده و بنابراين حتي در مواقعي كه سيستم الكتريكي خودرو به طور كامل از كار مي‌افتد، خودرو در همه شرايط كاملا قابل كنترل خواهد بود. 

سيستم پاششHPI (High Precision Injection)        

 HPI، يا همان سيستم تزريق دقيق و مستقيم بنزين، موجب كارآمدتر شدن فرآيند سوخت و بالا رفتن عملكرد موتور شده و بنابراين شاهد كاهش قابل توجهي در ميزان نرخ مصرف سوخت خواهيم بود.

HPI ، مجموعه اي است كه عملكرد اجرايي ديناميك سوخت را منسجم تر مي كند.

عنصر اصلي تكنولوژي HPI انژكتور Piezo  است كه بين سوپاپ و شمع قرار مي گيرد. داخل انژكتور لايه هايي از كريستال هاي Piezo وجود دارد كه وقتي جريان الكتريسيته از آن ها عبور مي كند به طور يكنواخت منتشر مي شوند. اين امر موجب خروج مخلوطي از هوا و سوخت با فشار 200 bar از سوزن انژكتور (كه به باريكي تار موي انسان است) به محفظه احتراق مي شود.

 

 

ابري مخروطي شكل به اندازه ناخن انگشت شست، بادقت كامل به داخل شمع تزريق شده و به محض تماس با اكسيژن شعله ور مي شود. در مقايسه با سيستم هاي معمولي پاشش، HPI مستلزم مقدار كمي سوخت بوده و از هدر رفتن بنزيني كه به ديواره هاي محفظه احتراق پاشيده مي شود نيز جلوگيري مي كند. 

تاير (RF (Run-Flat 

با وجود تايرهاي RF ،حتي زماني كه باد تاير خالي شده باشد شما مي توانيد به حركت ادامه داده و عملكرد خودرو را در هنگام افت فشار باد در تاير حفظ نماييد. به جاي تعويض تاير در كنار خيابان كه امري ناخوشايند و محسوب ي شود، شما مي توانيد به حركت خود ادامه داده و به راحتي خود را به منزل و يا تعميرگاه برسانيد.

تايرهاي RF زاپاس خود محسوب مي شوند: با وجود ديوارهاي جانبي تقويت شده، تايرها حتي اگر كاملاً از  باد خالي شده باشند، قادر به ادامه عملكرد خود هستند. تركيب فرسايشي مقاوم به گرما كه در ساخت اين نوع تاير به كار گرفته شده است، در برابر افزايش احتمالي گرما مقاومت مي كند. با استفاده از تايرهاي RF شما قادر خواهيد بود با سرعتي بالاتر از 150 كيلومتر در ساعت و بدون تغيير وضعيت محسوس به رانندگي خود ادامه دهيد. در عين حال در وقت خود صرفه جويي كرده و بنابراين استرس كمتري خواهيد داشت، ديگر نيازي به حمل تاير زاپاس هم نداريد و در نتيجه فضاي بيشتري براي حمل بار در اختيار شما قرار مي گيرد. 

سيستم "رانندگي تطبيقي" (Adaptive Drive) تا حد ممكن فشار وارده بر تاير معيوب را كاهش داده و به تايرهاي ديگر انتقال ميدهد. اين نوع تايرها موجب امنيت بيشتر، آسودگي خاطر سرنشين و نيز امكان استفاده از فضاي بيشتر را در خودرو فراهم مي كند.شركت ADAC آلمان"، يعني همان بزرگترين كلوپ اتومبيل در دنيا، از تايرهايRF به عنوان "اولين انقلاب اساسي در طراحي تاير" از زمان به وجود آمدن تايرهاي بادي ياد مي كند.

سيستم ديناميك مؤثر(ED)  در BMW (Efficient Dynamics)

لذت استفاده از هر قطره سوخت، هدف سيستم ED است. با وجود مجموعه اي از فناوري هوشمندانه، BMW قادر است در حالي كه عملكرد ديناميك خودروي شما را افزايش مي دهد، تأثير بسزايي در كاهش مصرف سوخت و توليد گاز CO2 نيز داشته باشد.

هدف از به كارگيري مجموعه اي از تكنولوژي هاي پيشرفته ومبدعانه، كاهش ميزان مصرف سوخت به حداقل ممكن است. برخي از اين تكنولوژي ها در زمينه سوخت، نوع مواد مصرفي در ساختار خودرو، تركيبات مؤثر در كاهش اصطكاكات موجود و آيروديناميك هاي بهبود يافته و نيز مديريت همه جانبه مصرف انرژي به كار رفته اند.

جهت دستيابي به اين اهداف، موتورها ارتقاء يافته اند؛ موتورهاي بنزيني به وسيله فناوري HPI و موتورهاي ديزلي توسط نسل سوم پاشش ريلي (Rail Injection) و مواد سبك كه منجر به كاهش وزن خودرو تا سقف 20 كيلوگرم شده اند مورد بازبيني قرار گرفته اند 

بهبود وضعيت آيروديناميكي خودرو همچون كنترل هواكش خودرو، تايرهاي مقاوم و ... همگي منجر به نتايج مثبتي شده اند كه نتيجه آن عملكرد ديناميكي خودرو با مصرف سوخت كمتر است. BMW مدل i 120 (5 درب) كه 1 ليتر بنزين كمتر از مدل قبلي مصف مي كند و قادر است 1 ثانيه زودترسرعت خود را به 100 كيلومتر بر ساعت برساند، نمونه اي از به گارگيري اين روش هاي بهبود يافته است.

 

 

سيستم روشن و خاموش (سوئيچينگ) اتومات (Auto Start-Stop)

سيستم سوئيچينگ اتوماتيك ASS راهي هوشمندانه جهت ذخيره سازي سوخت است. در اين حالت زماني كه خودرو به طور كامل متوقف شود، مثلاً در زمان توقف پشت چراغ قرمز، موتور  به طور اتوماتيك خاموش و سپس روشن مي شود كه اين امر موجب كاهش مصرف سوخت خودرو مي شود.

اصول اين كار بسيار ساده است: اگر موتور در حال كار نباشد نمي تواند سوخت مصرف كند. بنابراين سيستم اتوماتيك ASS زماني كه نيازي به روشن بودن موتور نيست آن را خاموش مي كند. در مواقعي كه ترافيك سنگين است و شما مجبور هستيد مكرراً ترمز كنيد، به راحتي مي توانيد خودرو را روي دنده آزاد تنظيم كرده و پاي خود را از روي كلاچ برداريد تا سيستم ASS فعال شود؛  در اين صورت شما لوگوي فعال بودن اين سيستم را در صفحه نمايش خودرو مشاهده خواهيد كرد. براي غيرفعال كردن اين حالت كافي است خودروي خود را از حالت آزاد خارج كنيد. سپس به محض اين كه بر روي كلاچ فشار آوريد موتور شروع به كار كرده و شما مي توانيد بدون لحظه اي تأخير به مسير خود ادامه دهيد.

راحت و امنيت راننده در حين رانندگي و در حين استفاده از سيستم ASS دچار مخاطره نمي شود. براي مثال، هنگامي كه دماي موتور از حد معمول بالاتر باشد، يا هواي درون اتاق به وسيله تهويه كننده هوا به دماي مطلوب نرسيده باشد، يا باتري دچار مشكل شده باشد و يا هنگامي كه راننده فرمان را مي چرخاند، اين سيستم عمل نخواهد كرد.

سيستم اتوماتيك ASS به وسيله يك كنترل مركزي هدايت مي شود كه اطلاعات مورد نظر را از حسگرهاي مربوطه( استارت و دينام) دريافت مي كند. براي مثال اگر خودرو شروع به چرخيدن كند، شارژ باتري به شدت افت كرده و يا روي شيشه جلوي خودرو بخار مي نشيند، در نتيجه به منظور حفظ آسايش و امنيت راننده ، كنترل مركزي به طور اتوماتيك موتور را خاموش و دوباره روشن مي كند.

در عين حال، اين سيستم قادر است فرق ميان توقف موقت و دائم را تشخيص دهد؛ اگر كمربند ايمني راننده بسته نباشد و يا درب كاپوت باز باشد اين سيستم عمل نخواهد كرد. البته اگر مايل باشيد مي توانيد با فشار دادن يك دكمه اين سيستم را به طور كامل غيرفعال كنيد.

با استفا مكرر و دائم از اين سيستم، شما شاهد كاهش قابل توجهي در مصرف سوخت و توليد گاز CO2 خواهيد و.

سيستم هشدارگر عيب تاير (TDI (Tyre Defect Indicator

سيستم هشدارگر عيب تاير به محض بروز مشكل در هر كدام از تايرها به شما هشدار مي دهد تا از خرابي بيشتر تاير جلوگيري كنيد و به نوعي ضامن امنيت شما است.

اين سيستم الكترونيكي داراي علامت هشداردهنده اي بر روي پانل علائم است. وقتي باد تاير كم مي شود، شعاع تاير كاهش يافته و در نتيجه سرعت گردش چرخ افزايش مي يابد. سيستم TDI مجهز به حسگرهايي است كه بر ميزان سرعت گردش چرخ و سيستم ترمز ABS نظارت داشته و اطلاعات مربوط به هر كدام از چرخ ها را به طور جداگانه بررسي مي كند. اين بدان معني است كه اين سيستم داراي قابليت تشخيص تفاوت سرعت در هر يك از چرخ ها مي باشد. البته لازم به ذكر است تشخيص كم‌باد بودن  چرخ ها از عهده اين سيستم خارج بوده و بهترين راه براي جلوگيري از هرگونه خطر احتمالي، چك كردن تايرها به طور دائم است

 

 

منبع : سايت تخصصي اموزش راهنمايي و رانندگي(منبع اصلي سايت BMV)

+نوشته شده در یکشنبه سیزدهم تیر 1389ساعت14:4توسط سیدمحمدسادات رسول ومسعودصنعتی نژاد | |


نمايشگاه اكسپو ‌٢٠١٠ شانگهاي، نمايش مفهومي هيبريدي پژو سيتروئن

        
هنوز چند روزي بيشتر از پايان برگزاري نمايشگاه خودرو پكن ‌٢٠١٠ در چين نگذشته كه بار ديگر رويدادي اين بار بسيار عظيم‌تر تعدادي از خودروسازان بزرگ جهان را دور هم جمع كرده است.
اين بار خودروسازان جهان به همراه بسياري از صنايع ديگر در نمايشگاه اكسپوي شانگهاي چين دور هم جمع شده تا در فضايي عظيم به ارايه آخرين دستاوردهاي خود بپردازند.
در همين راستا پژو سيتروئن، دومين خودروساز بزرگ فرانسه قصد دارد به زودي در اكسپوي شانگهاي مدل مفهومي هيبريدي خود با نام متروپليس را به نمايش بگذارد. اين خودرو ويژه بازار چين طراحي شده است.
پژو سيتروئن در شانگهاي چين مركز طراحي دارد. متروپليس نيز در همين مركز طراحي شده است.
پژو سيتروئن به همراه تعداد زياد ديگر از شركت‌هاي فرانسوي در غرفه فرانسه در نمايشگاه اكسپوي شانگهاي محصولات خود را در معرض ديد عموم مي‌گذارند.
اين خودرو هيبريدي داراي موتور تركيبي الكتريكي/بنزيني است. موتور اين خودرو از نوع v6 دو ليتري بوده و داراي قدرتي معادل ‌٢٧٢ اسب بخار است. حداكثر قدرت موتور الكتريكي اين خودرو نيز به ‌٩٧ اسب بخار مي‌رسد.
چين دومين بازار بزرگ پژو سيتروئن در خارج از اروپا محسوب مي‌شود.
نمايشگاه اكسپو شانگهاي به مدت شش ماه در اين شهر چين برگزار مي‌شود.

+نوشته شده در چهارشنبه بیست و دوم اردیبهشت 1389ساعت19:12توسط سیدمحمدسادات رسول ومسعودصنعتی نژاد | |

مقدمه:

موتورهای القایی AC عمومی ترین موتورهایی هستند که در سامانه های کنترل حرکت صنعتی و همچنین خانگی استفاده می شوند.طراحی ساده و مستحکم , قیمت ارزان , هزینه نگه داری پایین و اتصال آسان و کامل به یک منبع نیروی AC امتیازات اصلی موتورهای القایی AC هستند.انواع متنوعی از موتورهای القایی AC در بازار موجود است.موتورهای مختلف برای کارهای مختلفی مناسب اند.با اینکه طراحی موتورهای القایی AC آسانتر از موتورهای DC است , ولی کنترل سرعت و گشتاور در انواع مختلف موتورهای القایی AC نیازمند درکی عمیقتر در طراحی و مشخصات در این نوع موتورهاست.

مقدمه:

موتورهای القایی AC عمومی ترین موتورهایی هستند که در سامانه های کنترل حرکت صنعتی و همچنین خانگی استفاده می شوند.طراحی ساده و مستحکم , قیمت ارزان , هزینه نگه داری پایین و اتصال آسان و کامل به یک منبع نیروی AC امتیازات اصلی موتورهای القایی AC هستند.انواع متنوعی از موتورهای القایی AC در بازار موجود است.موتورهای مختلف برای کارهای مختلفی مناسب اند.با اینکه طراحی موتورهای القایی AC آسانتر از موتورهای DC است , ولی کنترل سرعت و گشتاور در انواع مختلف موتورهای القایی AC نیازمند درکی عمیقتر در طراحی و مشخصات در این نوع موتورهاست.
این نکته در اساس انواع مختلف , مشخصات آنها , انتخاب شرایط برای کاربریهای مختلف و روشهای کنترل مرکزی یک موتورهای القایی AC را مورد بحث قرار می دهد.


اصل ساخت اولیه و کاربری

مانند بیشتر موتورها , یک موتورهای القایی AC یک قسمت ثابت بیرونی به نام استاتور و یک روتور که در درون آن می چرخد دارند , که میان آندو یک فاصله دقیق کارشناسی شده وجود دارد.به طور مجازی همه موتورهای الکتریکی از میدان مغناطیسی دوار برای گرداندن روتورشان استفاده می کنند.یک موتور سه فاز القایی AC تنها نوعی است که در آن میدان مغناطیسی دوار به طور طبیعی بوسیله استاتور به خاطر طبیعت تغذیه گر آن تولید می شود.در حالی که موتورهای DC به وسیله ای الکتریکی یا مکانیکی برای تولید این میدان دوار نیاز دارند.یک موتور القایی AC تک فاز نیازمند یک وسیله الکتریکی خارجی برای تولید این میدان مغناطیسی چرخشی است.
در درون هر موتور دو سری آهنربای مغناطیسی تعبیه شده است.در یک موتور القایی AC یک سری از مغناطیس شونده ها به خاطراینکه تغذیه AC به پیچه های استاتور متصل است در استاتور تعبیه شده اند.بخاطر طبیعت متناوب تغذیه ولتاژ AC بر اساس قانون لنز نیرویی الکترومغناطیسشی به روتور وارد می شود (درست شبیه ولتاژی که در ثانویه ترانسفورماتور القا می شود).بنابر این سری دیگر از مغناطیس شونده ها خاصیت مغناطیسی پیدا می کنند.-نام موتور القایی از اینجاست-.تعامل میان این مگنت ها انرژی چرخیدن یا تورک (گشتاور) را فراهم  می آورد.در نتیجه موتور در جهت گشتاو بوجود آمده چرخش می کند.


استاتور

استاتور از چندین قطعه باریک آلومنیوم یا آهن سبک ساخته شده است.این قطعات بصورت یک سیلندر تو خالی به هم منگنه و محکم شده اند(هسته استاتور) با شیارهایی که در شکا یک نشان داده شده اند.سیم پیچهایی از سیم روکش دار در این شیارها جاسازی شده اند.هر گروه پیچه با هسته ای که آن را فرا گرفته یک آهنربای مغناطیسی (با دو پل) را برای کار کردن با تغذیه AC شکل می دهد.تعداد قطبهای یک موتور القایی AC به اتصال درونی پیچه های استاتوربستگی دارد.پیچه های استاتور مستقیما به منبع انرژی متصل اند.آنها به صورتی متصل اند که با برقراری تغذیه AC یک میدان مغناطیسی چرخنده تولید می شود.



روتور

روتور از چندین قطعه مجزای باریک فولادی که میانشان میله هایی از مس یا آلومنیوم تعبیه شده ساخته شده است.در رایج ترین نوع روتور (روتور قفس سنجابی) این میله ها در انتهای خود به صورت الکتریکی و مکانیکی بوسیله حلقه هایی به هم متصل شده اند.تقریبا 90 درصد از موتورهای القایی دارای روتور قفس سنجابی می باشند و این به خاطر آن است که این نوع روتور ساختی مستحکم و ساده دارد.این روتور از هسته ای چند تکه استوانه ای با محوری که شکافهای موازی برای جادادن رساناها درون آن دارد تشکیل شده است.هر شکاف یک میله مسی یا آلومنیومی یا آلیاژی را شامل می شود.در این میله ها به طور دائمی بوسیله حلقه های انتهایی آنها همچنان که در شکل دو مشاهده می شود مدار کوتاه برقرار است.چون این نوع مونتاژ درست شبیه قفس سنجاب است , این نام برای آن انتخاب شده است.میله ای روتور دقیقا با محور موازی نیستند.در عوض به دو دلیل مهم قدری اریب نصب می شوند.
دلیل اول آنکه موتور با کاهش صوت مغناطیسی بدون صدا کارکرده و برای آنکه از هارمونیکها در شکافها کاسته شود.
دلیل دوم آن است که گرایش روتور به هنگ کردن کمتر شود.دندانه های روتور به خاطر جذب مغناطیسی مستقیم (محض) تلاش می کنند که در مقابل دندانه های استاتور باقی بمانند.این اتفاق هنگامی می افتد که تعداد دندانه های روتور و استاتور برابر باشند.
روتور بوسیله مهار هایی در دو انتها روی محور نصب شده ; یک انتهای محور در حالت طبیعی برای انتقال نیرو بلندتر از طرف دیگر گرفته می شود.ممکن است بعضی موتورها محوری فرعی در طرف دیگر(غیر گردنده - غیر منتقل کننده نیرو) برای اتصال دستگاههای حسگر حالت(وضعیت) و سرعت داشته باشند.بین استاتور و روتور شکافی هوایی موجود است.بعلت القا انرژی از استاتور به روتور منتقل می شود.تورک تولید شده به روتور نیرو داده و سپس برای چرخیدن به آن نیرو می کند.صرف نظر از روتور استفاده شده قواعد کلی برای دوران یکی است.



سرعت یک موتور القایی

میدان مغناطیسی ای که در استاتور تولید میشود با سرعت سنکرون می چرخد.(Ns)



در روتور میدان مغناطیسی تولید می شود زیرا به طور طبیعی ولتاژ متناوب است.
برای کاهش سرعت نسبی نسبت به (شار)استاتور , روتور چرخش را در همان جهتی که شار استاتور دارد آغاز می کند و تلاش می کند تا به سرعت چرخش فلاکس نایل شود.با اینحال روتور هرگز موفق نمی شود که به سرعت میدان استاتور برسد.روتور از سرعت میدان استاتور کندتر می گردد.این سرعت Base speed نام دارد.(Nb)
تفاوتها میان Ns و Nb Slip نام دارد.اسلیپ مقادیر مختلف فشار(مکانیکی) بستگی دارد.هر افزایشی در فشار موجب کندتر کار کردن روتور و افزایش اسلیپ می شود.برعکس کاهش فشار سبب سرعت گرفتن روتور و کاهش اسلیپ می شود.اسلیپ بوسیله درصد نشان داده شده و با فرمول زیر مشخص می شود.



انواع موتورهای القایی

عموما دسته بندی موتورهای القای براساس تعداد پیچه های استاتور است که عبارتند از:
موتورهای القایی تک فاز
موتورهای القایی سه فاز

موتورهای القایی تک فاز

احتمالا بیشتر از کل انواع موتورها از موتورهای القایی AC تک فاز استفاده می شود.منطقی است که باید موتورهای دارای کمترین گرانی و هزینه نگه داری بیشتر استفاده شود. موتور القایی AC تک فاز بهترین مصداق این توصیف است.آن طور که از نام آن برمیاید این نوع از موتور تنها یک پیچه (پیچه اصلی) دارد و با یک منبع تغذیه تک فاز کار می کند.در تمام موتورهای القایی تک فاز روتور از نوع قفس سنجابی است.
موتور القایی تک فاز خود راه انداز نیست.هنگامی که موتور به یک تغذیه تک فاز متصل است پیچه اصلی دارای جریانی متناوب می شود.این جریان متناوب میدان مغناطیسی ای ضربانی تولید می کند.بسبب القا روتور تحریک می شود.چون میدان مغناطیسی اصلی ضربانی است تورکی که برای چرخش موتور لازم است بوجود نمی آید و سبب ارتعاش روتور و نه چرخش آن می شود.از این رو موتور القایی تک فاز به دستگاه آغاز گری نیاز داردکه می تواندضربات آغازی را برای چرخش موتور تولید کند.
دستگاه آغاز گر موتورهای القایی تک فاز اساسا پیچه ای اضافی در استاتور است (پیچه کمکی) که در شکل سه نشان داده شده است.پیچه استارت می تواند دارای خازنهای سری ویا سوئیچ گریز از مرکز باشد.هنگامی که ولتاژ تغذیه برقرار است جریان در پیچه اصلی بسبب مقاومت پیچه اصلی ولتاژتغذیه را افت میدهد (ولتاژ به جریان تبدیل می شود).در همین حین جریان در پیچه استارت بسته به مقاومت دستگاه استارت به افزایش ولتاژ تغذیه تبدیل می شود.فعل و انفعال میان میدانهای مغناطیسی که پیچه اصلی و دستگاه استارت می سازند میدان برایندی میسازند که در جهتی گردش می کند.موتور گردش را در جهت این میدان برایند آغاز میکند.
هنگامی که موتور به 75 درصد دور مجاز خود می رسد یک سوئیچ گریز از مرکز پیچه استارت را از مدار خارج می کند.از این لحظه به بعد موتور تک فاز می تواند تورک کافی را برای ادامه کارکرد خود نگه دارد.
بجز انواع خاص دارای Capacitor start / capacitor run عموماهمه موتورهای تک فاز فقط برای کاربری های بالای 3/4 hp استفاده می شوند.
بسته به انواع تکنیکهای استارت موتورهای القایی تک فاز AC در دسته بندی ای وسیع آن گونه که در شکل زیر توصیف شده قرار دارند.



موتور القایی AC فاز شکسته

موتور فاز شکسته همچنین به عنوان Induction start/Induction run (استارت القایی/کارکرد القایی)هم شناخته می شود که دو پیچه دارد.پیچه استارت از سیم نازکتر و تعداد دور کمتر نسبت به پیچه اصلی برای بوجود آوردن مقاومت بیشتر ساخته شده است.همچنین میدان پیچه استارت در زاویه ای غیر از آنچه که پیچه اصلی دارد قرار می گیرد که سبب آغاز چرخش موتور می شود.پیچه اصلی که از سیم ضخیم تری ساخته شده است موتور را همیشه درحالت چرخش باقی نگه می دارد.



تورک آغازین کم است مثلا 100 تا 175 درصد تورک ارزیابی شده.موتور برای استارت جریانی زیاد طلب می کند.تقریبا 700 تا 1000 درصد جریان ارزیابی شده.تورک بیشینه تولید شده نیز در محدوده 250 تا 350 درصد از تورک براوردشده می باشد.(برای مشاهده منحنی سرعت – گشتاور به شکل 9نگاه کنید).
کاربریهای خوب برای موتورهای فاز شکسته شامل سمباده (آسیاب) های کوچک , دمنده ها و فنهای کوچک و دیگر دستگاههایی با نیاز به تورک آغازین کم با و نیاز به قدرت 1/20 تا 1/3 اسب بخار می باشد.از استفاده از این موتورها در کاربریهایی که به دوره های خاموش و روشن و گشتاور زیاد نیازدارند خود داری نمایید.

موتور القایی با استارت خازنی

این نوع , موتور اصلاح شده فاز شکسته با خازنی سری با آن برای بهبود استارت است.همانند موتور معمولی فاز شکسته این نوع موتور یک سوئیچ گریز از مرکز داشته که هنگامی که موتور به 75 درصد سرعت ارزیابی شده می رسد , پیچه استارت را از مدار خارج می نماید.از آنجا که خازن با مدار استارت موازی است , گشتاور استارت بیشتری تولید می کند , معمولا در حدود 200 تا 400 درصد گشتاور ارزیابی شده.و جریان استارت معمولا بین 450 تا 575 درصد جریان ارزیابی شده است.که بسیار کمتر از موتور فاز شکسته و بعلت سیم ضخیمتر در مدار استارت است.برای منحنی سرعت گشتاور به شکل 9 مراجعه کنید.
نوع اصلاح شده ای از موتو با استارت خازنی ، موتور با استارت مقاومتی است.در این نوع موتور خازن استارت با یک مقاومت جایگزین شده است.موتور استارت مقاومتی در کاربریهایی مورد استفاده قرار می گیرد که میزان گشتاور استارتینگی کمتر از مقداری که موتور استارت خازنی تولید می کند لازم است.صرف نظر از هزینه این موتور امتیازات عمده ای نسبت به موتور استارت خازنی ندارد.



این موتورها در انواع مختلف کاربریهای پولی و تسمه ای مانند تسمه نقاله های کوچک , پمپها و دمنده های بزرگ به خوبی بسیاری از خود گردانها و کاربریهای چرخ دنده ای استفاده می شوند.

موتورهای AC القایی با خازن دائمی اسپلیت

این موتور (PSC) نوعی خازن دائما متصل به صورت سری به پیچه استارت دارد.این کار سبب آن میشود که پیچه استارت تازمانی که موتور به سرعت چرخش خود برسد بصورت پیچه ای کمکی عمل کند.از آنجا که خازن عملکرد اصلی , باید برای استفاده مداوم طراحی شده باشد , نمیتواند توان استارتی معادل یک موتور استارت خازنی ایجاد نماید.گشتاور استارت یک موتور (PSC) معمولا کم و در حدود 30 تا 150 درصد گشتاور ارزیابی شده است.موتورهای (PSC) جریان استارتی پایین , معمولا در کمتر از 200 درصد جریان برآورد شده دارند که آنها را برای کاربریهایی با سرعتهای دارای چرخه های خاموش روشن بالا بسیار مناسب میسازد.برای منحنی سرعت – گشتاور به شکل 9 مراجعه کنید.
موتورهای PSC امتیازات فراوانی دارند.طراحی موتور براحتی برای استفاده با کنترل کننده های سرعت میتواند اصلاح شود.همچنین می توانند برای بازدهی بهینه و ضریب توان بالا در فشار برآورد شده طراحی شوند.آنها به عنوان قابل اطمینان ترین موتور تک فاز مطرح میشوند.مخصوصا به این خاطر که به سوئیچ گریز از مرکز نیازی ندارند.



موتورهای PSC بسته به طراحیشان کاربری بسیار متنوعی دارند که شامل فنها , دمنده ها با نیاز به گشتاور استارت کم و چرخه های کاری غیر دائمی مانند تنظیم دستگاهها (طرز کارها) , عملگر درگاهها و بازکننده های درب گاراژها میشود.

موتورهای AC القایی استارت با خازن/ کارکرد با خازن

این موتور , همانند موتور با استارت خازن , خازنی از نوع استارتی در حالت سری با پیچه کمکی برای گشتاور زیاد استارت دارد.همچنین مانند یک موتور PSC خازنی از نوع کارکرد که درکنار خازن استارت در حالت سری با پیچه کمکی است که بعد از شروع به کار موتور از مدار خارج می شود.این حالت سبب بوجود آمدن گشتاوری در حد اضافی می شود.



این نوع موتور می تواند ... و بازده بیشتر طراحی شود.(منحنی سرعت – گشتاور در شکل 9 را ببینید).این موتور بخاطر خازنهای کارکرد و استارت و سوئیچ گریز از مرکز آن پرهزینه است.
این موتور می تواند در بسیاری از کاربریهایی که از هرموتور تک فاز دیگری انتظار میرود استفاده شود.این کاربریها شامل ماشینهای مرتبط با چوب , کمپرسورهای هوا , پمپهای آب فشار قوی , پمپهای تخلیه و دیگر کاربردهای نیازمند گشتاورهای بالا در حد 1 تا 10 اسب بخار می شوند.

موتور القایی AC با قطب سایه دار

موتورهای با قطب سایه دار فقط یک پیچه اصلی دارند و پیچه استارت ندارند.استارت خوردن بوسیله طرح خاص آن که حلقه پیوسته مسی ای را دور قسمت کوچکی از هر قطب موتور حلقه می کند انجام می شود.این سایه که قطب را دو تکه می کند سبب می شود که میدان مغناطیسی ای ضعیفتر در ناحیه سایه خورده نسبت به قسمت دیگر و در کنار آن بوجود آید.تعامل میان میدانها محور را به چرخش وامی دارد.
چون موتور با قطب سایه خورده پیچه استارت , سوئیچ استارت ویا خازن ندارد از نظر الکتریکی ساده و ارزان است.همچنین سرعت آن راصرفا با تغییر ولتاژ یا بوسیله یک پیچه با چند دور مختلف می توان کنترل کرد.


ساخت موتور با قطب سایه خورده از نظر مکانیکی اجازه تولید انبوه را میدهد.درحقیقت این موتورها به موتورهای یک بار مصرف معروفند.بدین معنی که جایگزین کردن آنها ارزانتر از تعمیر آنهاست.



موتورهای با قطب سایه دار بسیاری مشخصات مثبت دارند.اما چندین مورد بی فایدگی هم دارند.گشتاور استارت کم آن معمولا 25 تا 75 درصد گشتاور برآوردی است.این موتور موتوری با اتلاف بالاست که سرعتی حدود 7 تا 10 درصد سرعت سنکرون دارد.عموما بازده این نوع موتور بسیار پایین است (زیر 20 درصد).
هزینه اولیه پایین آن را برای قدرت کمتر یا کاربردهای با کار کمتر مناسب می سازد.شاید وسیعترین استفاده از آنها در فنهای چند سرعته برای استفاده خانگی است.ولی گشتاور کم موتور دارای قطب سایه دار را برای بیشتر کاربریهای صنعتی یا تجاری که در آنها کار مداوم یا چرخه های گردش بیشتر معمول است غیر قابل استفاده می کند.شکل 9 منحنی سرعت - گشتاور را برای انواع موتور القایی AC تک فاز نشان می دهد.


موتور القایی AC سه فاز

موتورهای القایی AC سه فاز به طور گسترده در کاربریهای تجاری و صنعتی استفاده می شوند.آنها هم به عنوان موتورهایی با روتور پیچ خورده یا قفس سنجابی دسته بندی می شوند.
این موتورها خود استارت هستند و از هیچ خازن یا پیچه استارت یا سوئیچ گریز از مرکز یا دستگاه آغازگری استفاده نمی کنند.
آنها گشتاور آغازین در درجه های متوسط یا بالا تولید می نمایند.محدوده نیروی تولیدی و بازده این موتورها از متوسط تا بالا با مشابه های تک فازشان مقایسه می شود.استفاده های عمومی آنها مانند آسیابها (و لیث ها دستگاه برنده و فرم دهنده چوب و فلز) مته فشاری پمپها کمپرسورها تسمه نقاله ها همچنین دستگاههای چاپ دستگاههای مزرعه سرمایش در الکترونیک و دیگر کاربریهای مکانیکی است.

موتور قفس سنجابی

تقریبا 90 درصد موتورهای القایی AC سه فاز از این نوعند.که روتور آنها از نوع قفس سنجابی است که در ابتدا توضیح داده شد.محدوده های طبقه بندی نیروی آنها از یک سوم تا چند صد اسب بخار است.موتورهای این نوعی که در دسته یک اسب بخار به بالا اند در مقایسه با مشابه های تک فاز کم هزینه ترند و میتوانند در استارت در فشارهای سنگینتر بکار کنند.

موتور با روتور پیچشی

موتور با حلقه لغزان یا موتور روتور پیچشی نوعی از موتور القایی قفس سنجابی است.درحالی که استاتور در این موتور همانند موتور قفس سنجابی است یک سری از پیچه ها را روی روتور خود دارد که در حالت مدارکوتاه نیستند ولی به یک سری از رینگهای لغزان ختم می شوند.این پیچه ها در اضافه کردن مقاومتها و خازنهای خارجی سودمندند.اسلیپ لازم برای تولید گشتاور بیشینه نهایی مستقیما با مقاومت روتور متناسب است.در موتور با حلقه لغزان مقاومت موثر روتور با اضافه کردن مقاومت خارجی میان حلقه های لغزان کاهش میابد.
بنابراین امکان بدست آوردن لغزش بیشتر و همچنین گشتاور بیشینه نهایی در سرعتهای کمتر وجود دارد.
یک مقاومت خارجی می توانددر سرعت تقریبا صفر را نتیجه دهد که گشتاو بیشینه نهایی بسیار زیادی با جریان استارت کم را تولید می کند.هنگامی که موتور شتاب می گیرد مقدار مقاومت می تواند کاهش یابد تا مشخصات موتور برای کارهایی با فشار زیاد مناسب شود.هنگامی که موتور به سرعت اصلی میرسد خازنهای خارجی از مدار خارج می شوند و این یدین معنی است که اکنون موتور به عنوان یک موتور القایی استاندارد کار می کند.
این نوع موتور برای فشارهای مانا (کارهایی با فشار ثابت) که درآنها گشتاور نهایی باید در سرعت تقریبا صفر تولید شده و موتور درکمترین زمان و با کمترین مصرف جریان تا سرعت بیشینه شتاب گیرد ایده آل است.***



قسمت پایینی موتور با حلقه لغزان که در آن حلقه ها به همراه مجموعه براشها است به نگهداری منظم نیاز داردکه از نظر قیمت , استاندارد بودن آن را به عنوان یک موتور قفس سنجابی غیر ممکن می کند.اگر پیچه ها کوتاهتر شوده و استارت زده شود معمولا جریان بالااز روتور در حالت متوقف عبورمی کند که در حد 1400 درصد است.درحالیکه در این حالت درآن گشتاوری در حد 60درصد تولید مینماید که در بسیاری از کاربریها چنین امکان پشتیبانی چنین چیزی نیست.با تغییر مقاومتهای روتور منحنی سرعت گشتاور تعدیل می گرددکه بدان وسیله سرعتی که درآن موتور در فشاری مخصوص کارمی کند تعدیل می شود.ظرفیت تکمیل فشار میتواند سرعت را تا 50درصد سرعت سنکرون کاهش دهد.خصوصا هنگامی که فشار , از انواعی با نیاز به گشتاور – سرعتهای مختلف مثل پرسهای چاپ یا کمپرسورها است.کاهش سرعت تا زیر 50درصد بازده را به خاطر اتلاف انرژی در مقاومتها به شدت کاهش میدهد.این نوع موتور در کاربریهایی با چرخش با گشتاور و سرعتهای مختلف مانند پرسهای چاپ , کمپرسورها , تسمه نقاله ها , بالابرنده ها و آسانسورها مورد استفاده قرار می گیرد.

معادله کنترل گشتاور عملکرد موتور

سیستم بار موتور میتواند بوسیله معادله اساسی زیر بیان شود.



برای چرخشهایی با ماند ثابت داریم:



این نشان میدهد که گشتاور ایجادشده توسط موتوربا گشتاوربار نسبت عکس دارد.
مولفه گشتاور  گشتاور پویا نامیده می شود زیرا فقط در اعمال زودگذر و آنی ظاهر میشود.اینکه چرخش تسریع یا کند میشود به این بستگی دارد که T از T1 بزرگتر یا کوچکتر باشد.در هنگام شتاب گیری موتور نباید تنها گشتاور بار راتغذیه کند بلکه باید مولفه گشتاور اضافی ای را  برای چیره شدن به اینرسی داشته باشد.در درایوهایی با اینرسی بزرگ مانند قطارهای الکتریکی گشتاور موتور برای مقدار بسیار کافی شتابگیری باید از گشتاور بار تجاوز کند.در درایوهایی با نیاز به واکنش سریع گشتاور موتور باید در بالاترین مقدارنگه داشته شده و سیستم بار موتور با کمترین مقدار ممکن اینرسی طراحی شده باشد.انرژی مربوط به گشتاور پویا  بصورت انرژی جنبشی (KE) بوجود آمده  ذخیره می شود.در زمان شتابگیری گشتاور پویا  علامت منفی دارد.ازین رو به گشتاور تولیدی موتور T و حفظ تحرک چرخش بوسیله استخراج انرژی از انرژی جنبشی ذخیره شده کمک می کند.
برای خلاصه , برای حالت دائمی چرخش موتورگشتاوری تولیدی موتورT باید همیشه با گشتاور لازم بارT1 برابر باشد.
منحنی سرعت گشتاور موتور القایی سه فاز معمولی در شکل 11 نشان داده شده است.

ویژگی استارتینگ

موتورهای القایی درحالت خاموش مانند یک ترانسفورماتور درمدار کوتاه عمل می کنند و اگر کاملا به منبع ولتاژ متصل شوند جریانی بسیار بزرگ می کشند که این جریان به جریان روتور قفل شده معروف است. همچنین گشتاوری تولید می کند که به گشتاور روتور قفل شناخته می شود.گشتاور روتور قفل (LRT) و جریان روتور قفل (LRC) تابع ولتاژ پایانه و تابع طراحی آن می باشند.هنگامی که موتور شتاب می گیرد اگر ولتاژ ثابت نگه داشته شود هردوی گشتاور و جریان تلاش می کنند که سرعت روتور را تغیر دهند.
جریان استارت یک موتور با ولتاژ ثابت با شتاب گرفتن موتوربطوربسیار آهسته کاهش میابد و صرفا روند نزولی میابد.به خصوص وقتی که موتور به 80 درصد سرعت کامل خود میرسد.منحنیهای واقعی برای موتورهای القایی میتوانند میان طراحی های مختلف بسیاربسیارمتفاوت باشند ولی عموما گرایش آنها به جریان بالاست تا وقتی که متور تقریبا به سرعت کامل میرسد.LRC یک موتور میتواند در محدوده از500 درصد تا 1400 درصد جریان ظرفیت تکمیل (FLC) باشد.معمولا موتورهای خوب در محدوده 550 تا 750درصد از FLC میاشند.
گشتاور استارت یک موتور القایی که با ولتاژ ثابت آغاز به کار می کند , کمی به گشتاور کمینه افت می کند که به Pull-Up torque شناخته می شود.و با شتاب گرفتن موتور در تقریبا سرعت بیشینه به یک گشتاور بیشینه افزایش یافته که به گشتاور شکست یا Pull-Out torque معروف است و سپس در سرعت سنکرون به صفر نزول می کند.منحنی گشتاور استارت برخلاف سرعت روتور به ولتاژ پایانه و طراحی روتور بستگی دارد.
LRT یک موتور القایی میتواند از مقدار کم 60 درصد FLT تا 350 درصد آن تغییر کند.Pull-Up torque نیز می تواند به کمی 40 درصد FLT و گشتاور شکست هم می تواند تا حد 350 درصد FLT باشد.معمولا LRT ها برای موتورهای بزرگ تا متوسط دستورا 120 تا 280 درصد FLT میباشد.ضریب توان (PF) با شتاب گرفتن موتور از استارت از .1 تا .25  به مقدار بیشینه افزایش یافته وسپس با رسیدن موتور به سرعت نهایی دوباره سقوط مینماید.

ویژگی عملکرد

هنگامی که موتوربه سرعت خود سرعتی که به تعداد قطبهای استاتور مربوط است رسیده است در میزان خطای کمی نسبت به سرعت سنکرون(Slip) کار می کند.معمولا میزان این کاستی برای یک موتور قفس سنجابی کمتر از 5 درصد است.اسلیپ حقیقی نوع خاصی از موتور به طراحی آن بستگی دارد.معمولا سرعت اصلی یک موتور القایی چهار قطبی بین 1420 تا 1480 دور در دقیقه در فرکانس 50 هرتز متغیر است.در حالی که سرعت سنکرون 1500 دور در دقیقه در فرکانس 50 هرتز است.
ولتاژ کشیده شده توسط موتور القایی دو جزء دارد:جزءانفعالی (جریان مغناطیسی سازی) و مولفه موثر (جریان کاری).جریان مغناطیسی سازی مستقل از بار ولی وابسته به طراحی و ولتاژ استاتور می باشد.جریان مغناطیسی سازی حقیقی موتور القایی می تواند از مقدار کم 20 درصد FLC برای دستگاه بزرگ دو پل تا بزرگی 60 درصد برای نمونه کوچک هشت پل متغیر باشد.جریان کاری موتوربا بار نسبت مستقیم دارد.
گرایش دستگاههای بزرگ و پرسرعت به ارائه دادن جریان مغناطیسی سازی کم است درحالی که گرایش ماشینهای کوچک و کم سرعت به جریان بالای مغناطیسی سازی میباشد.یک موتور معمولی در سایز متوسط و با چهار پلجریان مغناطیسی سازی ای معادل 33 درصد FLC دارد.
یک جریان کم مغناطیسی سازی اتلاف کم آهن را دربردارد در حالی که جریان بزرگ مغناطیسی سازی افزایش در اتلاف آهن و درنتیجه کاهش بازده عملکرد را در پی دارد.
معمولا بازده عملکرد یک موتور القایی در سه چهارم ظرفیت حداکثر است و از 60درصد برای موتورهای کوچک کم سرعت تا بیش از 92درصد برای موتورهای بزرگ پرسرعت متنوع است.ضرایب توان و بازده ها عموما در مشخصات موتورها ذکر شده است.

مشخصه بار

در واقعیت کاربریهایی با مقادیر مختلف بار با منحنیهای مختلف سرعت گشتاور وجود دارد.برای نمونه: گشتاور ثابت با بار با سرعت متغیر(در کمپرسورهای پیچشی تسمه نقاله ها تغذیه کننده ها) , گشتاور متغیر با بار با سرعت متغیر(در فن , پمپ) , توان بار ثابت(در محرکهای انقباضی) , توان و گشتاور بار ثابت(در محرکهای سیم پیچی) و گشتاور بالای استارت و دورگرفتن ناگهانی که در گشتاور ثابت بار(در پمپهای پیچشی , فشرده سازها) مشاهده می شود.
گفته می شود سیستم بار موتور پایدار است هرگاه گشتاور تولیدی موتور با گشتاور مورد نیاز بار برابر باشد.در این حالت موتور در یک سرعت ثابت در حالتی مانا کار می کند.پاسخگویی موتور به هر اختلال ایده ای در مورد پایداری سیستم بار آن به ما میدهد.این مفهوم به ما در انتخاب سریع نوع موتور برای کاربری خاصی کمک می کند.
در بیشتر کاربریها , واحد زمانی الکتریکی در مقابل واحد زمانی مکانیکی آن ناچیز است.ازین رو درهنگام اعمال آنی میتوان موتور را در تعادل الکتریکی فرض کرد که بر اینکه منحنی سرعت – گشتاور حالت پایدار برای اعمال آنی نیز صادق است دلالت دارد.
بعنوان نمونه شکل 12 منحنیهای سرعت – گشتاور موتوری با دو بار مختلف نشان میدهد.میتوان سامانه را بعد از به حالت اول بازگشتن پس از کمی تغییر به سبب اختلالی در موتور یا بار ثابت نامید.
برای نمونه اختلال سبب کاهش   در سرعت میشود.درحالت اول در سرعتی جدید گشتاور موتور T از گشتاور بار T1 بزرگتر است.بنابراین موتور شتاب گرفته و عملیات به X باز خواهد گشت.به طور مشابه افزایش  در سرعت که بوسیله یک اختلال بوجود میاید و گشتاور بار را از گشتاور موتور بیشتر خواهد کرد کاهش سرعت موتور وبازگشت حالت عملیات به نقطه X را نتیجه میدهد.بنابراین سیستم در نقطه X پادار است.
در حالت دوم کاهش سرعت سبب بیشتر شدن گشتاور بار از گشتاور مووتور میشود.چرخش کل کند شده و حالت دستگاه از نقطه Y دور میشود.به طور مشابه افزایشیدر سرعت گشتاور موتور را از گشتاور بار فزونی داده که موجب دور شدن بیشتر حالت دستگاه از نقطه Y میشود.بنابر این سامانه در نقطه Y ناپایدار است.
این نشان میدهد که موتور انتخاب شده برای کاربری در حالت اول صحیح است و انتخاب دوم انتخابی اشتباه میباشد و برای عمل مورد نظر باید تغییر کند.



انوع بار با منحنیهای سرعت – گشتاورشان در زیر توضیح داده شده اند.


بارهای با سرعت متغیر و گشتاور ثابت

گشتاوری که این نوع بارها نیازدارند صرفنظر از سرعت , ثابت اند.درمقابل نیرو با سرعت نسبت خطی دارد.دستگاههایی نظیر کمپرسورهای پیچشی , تسمه نقاله ها و تغذیه گرها(سوخت رسانها) چنین مشخصات باری دارند.



بارهای با گشتاور متغیر و سرعت متغیر

این عمومی ترین نوع بار درصنایع بوده و بیشتر اوقات به عنوان بار با گشتاور نمایی شناخته میشود.درحالی که نیرو مکعب سرعت است گشتاور مربع سرعت میباشد.این مشخصات معمول سرعت – گشتاور یک فن یا پمپ است.



بارهای با توان ثابت

این نوع بار کمیاب است ولی گاهی در صنایع مورد استفاده دارد.درحالی که گشتاور تغییر می کند توان ثابت استگشتاور با سرعت نسبت عکس داشته که به طور نظری گشتاور بینهایت در سرعت صفر و سرعت بینهایت در گشتاور صفر را در بر دارد.در عمل همیشه به مقدار متناهی گشتاور شکست نیاز است.این نوع بار مشخصه محررکهای انقباضی است که برای شتابگیری اولیه به گشتاور بالا در سرعت پایین و گشتاوری بسیار کاهش یافته در هنگام کارکرد نیاز دارد.



بارهای با توان ثابت و گشتاور ثابت

این نوع بار در کارخانه کاغذ استفاده میشود.در این نوع بار درحالیکه سرعت افزایش میابد , گشتاور ثابت مانده و توان بشکل خطی افزایش میابد.هنگامی که گشتاور شروع به کاهش می کند آنگاه توان ثابت می ماند.



گشتاور استارت و دورگیری بالا و در ادامه گشتاور ثابت

این نوع بار با گشتاوری بسیار بالا در بسامدهایی نسبتا کم مشخص میشود.در کاربریهایی نظیر فشرده سازها و پمپهای پیچشی.



استانداردهای موتور

درسراسر جهان استانداردهای مختلفی برای تبیین کاربریها و پارامترهای ساختمانی یک موتور موجود است.دو نوع استاندارد که بیش از همه مورد استفاده قرار می گیرد عبارتند از:NEMA (انجمن ملی سازندگان الکتریکی) و IEC (کمیته بین المللی الکتروتکنیکی).


NEMA

NEMA برای بسیاری از محصولات الکتریکی شامل موتورها استاندارد قرار میدهد.NEMA اصولا استاندارد موتورهای مورد استفاده در آمریکای شمالی است.استانداردهای معتبر لیاقتهای عمومی صنعتی را بیان می کنند و بوسیله جامعه الکتریکی پشتیبانی میشوند.این استانداردها را می توان در نشریه شماره MG1 NEMA یافت.ممکن است بعضی موتورهای بزرگ AC تحت این استاندارد قرار نگیرند.این موتورها برای مواجهه با نیاز در نوع خاصی از کاربری ساخته شده اند که جزء موتورهای NEMA محسوب نمیشوند.***


IEC

IEC سازمانی اروپایی است که استانداردهای الکتریکی و مکانیکی را از بین همه چیز برای موتورها در سراسر جهان منتشر میکند و ترفیع می دهد.در شرایط عادی میتوان گفت که IEC همتای بین المللی NEMA میباشد.دربسیاری ازکشورها موتورهای مورد استفاده تحت استاندارد IEC میباشند.این استانداردها را میتوان در IEC 34-1-16 یافت.***
به طور عمده استانداردهای NEMA چهار نوع طراحی را برای موتورهای AC القایی مشخص می کنند.(طرح A-B-C-D).منحنیهای سرعت – گشتاور نوعی آنها در شکل 18 نشان داده شده است.



طرح A گشتاور استارت طبیعی (بین 150 تا 170درصد مجاز) و جریان استارت نسبتا بالا دارد.گشتاور شکست آن در میان همه طرحهای NEMA بالاترین مقدار است که موتور را قادر میسازد تا با اضافه بارهای بسیار سنگین برای مدتی کوتاه سروکار داشته باشد.میزان اختلاف(Slip) 5درصد است.نوعی از استعمال آن در نیرودهی به ماشینهای قالبدهی تزریقی است.
طرح B معملی ترین نوع موتور القایی AC است که بفروش میرسد.مانند طرح A گشتاور استارتی طبیعی داشته ولی جریان استارتی پایین دارد.گشتاور روتور قفل , درآن آنقدر خوب هست که بسیاری از بارهایی را که در کاربری صنعتی با آنها مواجه میشود بکار بیندازد.اختلاف(Slip) آن 5درصد است.بازده و ضریب توان ظرفیت تکمیل(PF) آن نسبتا بالا بوده درضمن معروفیت طرح آن.از انواع کاربردهای آن میتوان به پمپها فنها و ماشین ابزارها اشاره کرد.
طرح C با گشتاور استارتی بالا(بالاتر از دونوع قبلی , 200درصد اسمی) , مناسب برای استفاده در بارهایی با شروع بکار ناگهانی مانند نقاله ها خرد کننده ها دستگاههای پرتحرک همزنها و پمپهای دوطرفه و کمپرسورها است.این موتورها نامزد استفاده در عملیاتی با سرعت نزدیک به سرعت تمام بدون اضافه بارهای بزرگ هستند.اختلاف (Slip) در آنها 5درصد میباشد.
طرح D گشتاور بالایی (بالاتر از همه مدلهایNEMA) دارد.جریان استارت و سرعت ظرفیت تکمیل در آن کمند.مقدار بالای اختلاف (5تا13درصد)این موتور را برای کاربریهایی با بارهای متغیر و با تغییرات برجسته در سرعت موتورمانند ماشین آلاتی با ذخیره ساز انرژی چرخ طیار پرسهای منگنه قیچیها آسانسورها استخراج کننده ها بالابرها جرثقیلها پمپهای چاه نفت ماشینهای سیمپیچی و غیره مناسب میسازد.تنظیم سرعت درآنها ضعیف است و آنها را فقط برای استفاده در پرسهای منگنه جرثقیلها آسانسورها و پمپهای چاه نفت مناسب می گرداند.معمولا این موتور به عنوان مورد سفارشی مطرح میشود.
بتازگی NEMA طرحی جدید(طرح D) را به استانداردش برای موتور القایی افزوده است.طرح E شبیه طرح B است با این تفاوت که بازدهی بالاتر جریان استارتی بالا تر و جریان کارکرد در اضافه باری کمتر دارد.مشخصات گشتاور طرح E شبیه موتورهای با همان پارامترهای نیروی تحت استاندارد IEC میباشد.
امتیازدهیهای سرعت – گشتاور طرحهای IEC عملا آینه استانداردهای NEMA است.طرح N از IEC شبیه طرح B از NEMA است , عمومی ترین موتورها برای کاربریهای صنعتی.طرح موتورهای H از IEC با طرح موتورهای C از NEMA بسیار شبیه است.IEC طرح خاصی که با طرح D از NEMA برابری کند ندارد.امتیازدهیهای چرخه کار IEC متفاوت از کار NEMA است.درحالیکه NEMA معمولا سه نوع کار دائمی غیردائمی(دوره ای) و خاص را معرفی میکند(که معمولابا دقیقه بیان میشوند) , IEC 9 نوع چرخه کار مختلف را استعمال مینماید.
استانداردهایی که در جدول 1 نشان داده شده اند صرفنظر از بیان پارامترهای عملکرد و چرخه های کاری , افزایش دما (کلاس ایزولاسیون) اندازه کل (ابعاد فیزیکی موتور) جنس پوسته ضریب نگهداری و چند چیز دیگر را بیان میکند.

شرح
نوع چرخه کاری
نوع
شماره
عملکرد در بارثابت ومدت زمان کافی برای رسیدن به تعادل گرمایی
کارمداوم
S1
1
کارکرد دربارثابت درزمان معین کمترازمیزان لازم برای رسیدن به تعادل گرمایی, که پس ازآن استراحت به دستگاه داده میشودبرای رسیدن دمای دستگاه به دمای خنک کننده.
کار موقت
S2
2
توالی چرخه های کاری برابر, که هرکدام شامل دوره کاربری دربارثابت ویک وقفه (بدون اتصال به برق)میباشد.برای این نوع کاربری جریان استارت تاثیرعمده ای برافزایش دماندارد.
کاردوره ای موقت
S3
3
توالی چرخه های کاری برابر, که شامل دوره های عمده استارتینگ میشود.دوره ای زیربارثابت و با وقفه دوره ای.
کاردوره ای موقت با استارت
S4
4
توالی چرخه های برابر,که شامل دوره ای از استارت ودوره ای ازکاربری دربارثابت شده که بدنبال آن ترمزی سریع ودوره استراحت میباشد.
کاردوره ای موقت
با ترمزالکتریکی
S5
5
توالی چرخه های کاری برابر, که شامل دوره ای ازکاربری دربارثابت ودوره کاربری ای درحالت بدون بارمیباشد.دراین نوع دوره استراحت وجود ندارد.
عملکردمداوم کاردوره ای
S6
6
توالی چرخه های کاری برابر, که شامل دوره ای ازاستارت,دوره ای ازکاردربار ثابت وبدنبال آن باترمزالکتریکی همراه است.این نوع دوره استراحتی ندارد.
عملکردمداوم کاردوره ای
با ترمزگیری الکتریکی
S7
7
توالی چرخه های کاری برابر, که دربارثابت که سرعت چرخش آن از قبل معین شده است کارمی کند وبدنبال آن دوره های کاربری دربارثابت دیگری باسرعتهای چرخش متفاوت است(کاربریe.g).دوره استراحت نداشته وبرای رسیدن به تعادل گرمایی دوره کاری بسیارکوتاه است.
عملکردمداوم کاردوره ای
با باروابسته و سرعت متغیر
S8
8
عموما کاری با باروسرعتی که بصورت غیرخطی درمحدوده مجاز تغییرمی کنند.این کابری شامل اضافه بارهای متناوب است که گاهی از ظرفیت تکمیل فراتر میروند.
کاربا بارغیر دوره ای
و سرعتهای متنوع
S9
9
 


برچسب معمول نام یک موتور القایی AC

یک برچسب معمول نام یک موتور القای AC در شکل 19 نشان داده شده است.

 
شرح
اصطلاح
ولتاژ اسمی پایانه
Volts
جریان تغذیه ظرفیت تکمیل اسمی
Amps
خروجی اسمی موتور
H.P.
سرعت اسمی در حالت ظرفیت تکمیل موتور
R.P.M
فرکانس تغذیه مجاز
Hretz
ابعاد فیزیکی خارجی موتور طیق استاندارهای NEMA
Frame
حالت بار موتور, کوتاه مدت, دوره ای, مداوم ...
Duty
تاریخ ساخت.
Date
کلاس ایزولاسیونی که برای ساختمان موتوربکاررفته است.این مورد بیشینه حد دمای پیچه موتور را مشخص می کند.
Class Insulation
این موردمشخص میکند که موتور به کدام کلاس طراحی NEMA متعلق است.
NEMA Design
فاکتوری است که مشخص میکندموتور میتواند چقدر بیشتر از ظرفیت تکمیل اضافه بار داشته باشد.
Service Factor
بازده کاربری موتور در ظرفیت تکمیل.
NEMA Nom
Efficiency
تعداد فازهای استاتور موتور را مشخص می کند.
PH
تعداد قطبهای موتور را مشخص می کند.
Pole
استاندارد ایمنی موتور را نشان میدهد.
مشخص میکندکه پیچه های موتور بصورت Y متصل شده اند یا دلتا.
Y
 


نیاز به محرک الکتریکی

صرفنظراز خصوصیات غیرخطی موتورالقایی موضوعات زیادی ضمیمه محرکه موتور است.اجازه دهید آنهارا یک به یک بررسی کنیم.
درقدیم تلاش میشد تا سطح طراحی موتورهای اولیه از کاری که قرار است انجام دهند بالاتر باشد.نتیجه این امر سیستم کاری ای با عدم بازده زیاد بود چراکه قسمت عمده ای از توان ورودی کار مفیدی انجام نمیداد. اغلب اوقات گشتاور تولیدی موتور بیشتر از گشتاور مورد نیاز باربود.
برای موتور القایی محدوده حالت پایدار بسبب فرکانس تغذیه و تعداد قطبهای ثابت بین 80 تا 100درصد سرعت ارزیابی شده است.هنگامیکه یک موتور القایی آغاز بکار میکند بعلت نبود نیروی برق وارانی جریان داخلی فراوانی خواهد کشید.نتیجه این امر اتلاف بیشتر در خطوط انتقال و همچنین روتورخواهد بود که نهایتا به داغ شدن و احتمالاخرابی و ازبین رفتن عایقها خواهد انجامید.جریان برقوارانی زیاد ممکن است موجب تقلیل ولتاژ در خطوط تغذیه شود که ممکن است بر عملکرد وسایل کاربردی دیگری که به همان منبع تغذیه متصل اند تاثیر گذارد.
وقتی که موتور در باری کمینه کارمیکند(اصطلاحا محور آزاد)جریان کشیده شده اصولا جریان مغناطیسی سازیست و تقریبا به طور کامل صرف القا میشود.درنتیجه ضریب توان بسیار پایین و معمولا0.1 است.هنگامی که بار افزایش یافت جریان کاری شروع به زیاد شدن می کند.جریان مغناطیسی سازی در تمام محدوده عملیاتی از وضعیت بدون بار تا ظرفیت تکمیل تقریبا ثابت میماند.از این رو با افزایش بار ضریب توان بهبود میابد.
هنگامی که موتور با ضریب توانی کمتر از واحد کار میکند جریان کشیده شده توسط موتور بطور طبیعی سینوسی نیست.این حالت کیفیت توان در خط تغذیه کاهش داده و ممکن است دیگر وسایل کاربردی که بهمان خط تغذیه متصلند را متاثر سازد.
ضریب توان بسیار مهم است بطوریکه شرکتهای توضیع مشتریانی را که توانی با ضریب توانی پایین تر از حد معین شده از طرف آنان می کشند را مجازات می نمایند.این بدین معنی است که مشتری مجبور است حالت ظرفیت تکمیل را در تمام مدت کاربری حفظ کند و یا آنکه جریمه حالت بار سبک را بپردازد.
درمدت کاربری اغلب لازم است که موتور سریعا متوقف شده و همچنین برعکس کارکند.در کاربریهایی مانند جرثقیلها یا بالابرها ممکن است لازم شود گشتاور چرخش موتور کنترل شود تا از شتابگیری نامطلوب بار جلوگیری شود (درمورد کاهش سرعت بارها تحت تاثیر جاذبه).سرعت و دقت توقف یا معکوس شدن عملیات حفاظت سامانه و کیفیت محصول را بهبود می بخشد.برای کاربریهای نامبرده در بالا ترمزگیری لازم است.درگذشته ترمزهای مکانیکی مورد استفاده بودند.نیروی اصطکاک میان قسمتهای گردنده و کفشکها ترمزگیری لازم را فراهم میاوردند.با اینحال این نوع ترمزگیری بسیار کمبازده است.گرمای تولید شده هنگام ترمزگیری اتلاف انرژی را نشان میدهد.همچنین ترمزهای مکانیکی نگهداری فعال لازم دارند.
در بسیاری از کاربریها توان ورودی تابع سرعت است مانند فنها دمنده ها پمپها و ...در این نوع بارها گشتاور به مربع سرعت وابسته و نیرو به مکعب سرعت بستگی دارد.سرعت متغیر که وابسته به نیاز بار است صرفه جویی در مصرف انرژی زیادی را میسر میسازد.کاهشی 20درصدی در سرعت کاربری موتور تقریبا 50درصد کاهش در توان ورودی موتور را بهمراه خواهد داشت.چنین امری در سامانه هایی که درآنها موتور مستقیما به خط تغذیه متصل است امکان پذیر نیست.در بسیاری از کاربریهای کنترل جریان گلوگاهی مکانیکی ای برای کنترل جریان استفاده میشود.با اینکه وسیله موثری است انرژی را بخاطر اتلافهای زیاد تلف می کند و عمر موتور را بعلت گرمای تولیدشده کم مینماید.
هنگامی که تغذیه کننده توانی را با ضریب (PF) کمتر از واحد تحویل میدهد وتور جریانی با تاثر از هارمونیکها می کشد.نتیجه این امر اتلافهای بیشتر روتور است که بر عمر موتور تاثیر میگذارد.گشتاور تولیدی موتور به علت وجود هارمونیکها ضربانی خواهد شد.در سرعت بالا بسامد ضربان گشتاور به اندازه کافی بزرگ است که بتواند بوسیله مقاومت موتور تصفیه شود.ولی در سرعت پایین ضربانی بودن گشتاور ضربانی شدن سرعت را بوجود خواهدآورد که حرکت با حالت متشنج را نتیجه خواهد داد که برعمر یاتاقانها اثر میگذارد.
خطوط انتقال ممکن است بخاطر عملکرد سایر دستگاههای متصل به آن حامل بارهای با تموج (افزایش ناگهانی) یا کاهش ناگهانی باشند.اگر موتور در مقابل ازاین قبیل حالات محافظت نشده باشد در معرض فشاری بیش از مقدار طراحی شده برای آن قرار میگیرد که ممکن است سرانجام دچار خرابی نابهنگام شود.
همه مشکلات ذکرشده در بالا که بوسیله هردوی مصرف کننده ها و تولیدکننده ها بوجود میایند به نیاز موتور به کنترلی هوشمند تاکید دارند.
با پیشرفت فناوری دستگاه حالت جامد (BJT, MOSFET, IGBT, SCR, …) و فناوری ساخت IC که به میکروکنترلرهای بسیارسریع با قابلیت اداره کردن الگوریتم مرکب بلادرنگ برای بخشیدن پویایی عملکرد دقیق به موتورهای القایی

+نوشته شده در چهارشنبه بیست و دوم اردیبهشت 1389ساعت18:58توسط سیدمحمدسادات رسول ومسعودصنعتی نژاد | |

 

کوپلینگ ها اجزایی از ماشین هستند که حرکت و توان را از انتهای یک محور دریافت و به محور دیگر منتقل می کنند. در کوپلینگ ها قطع ارتباط بین محور محرک و متحرک وجود ندارد. در یک دسته بندی کلی کوپلینگ ها به دو نوع صلب و انعطاف پذیر تقسیم بندی می شوند.

 

 

 

1- کوپلینگ های صلب (سخت)

این نوع کوپلینگ ها جهت اتصال دو محور کاملا هم راستا در تجهیزاتی که در آن ها هم محوری دقیق دو محور ضروری و قابل دسترس است استفاده می شود لازم به ذکر است که هر گونه عدم تقارن محوری در این نوع کوپلینگ ها خرابی های سریع را در اثر تشت های بالا به دنبال دارد این نوع از کوپلینگ ها به دو دسته تقسیم بندی می شوند:

1-1          کوپلینگ های پوسته ای

در این نوع کوپلینگها ، دو نصفه پوسته با فشار پیچها روی محور بسته شده و گشتاور چرخشی بوسیله اصطکاک به محور منتقل می گردد. هردو محور با خار انطباقی به پوسته متصل می شوند ، مونتاژ این کوپلینگها آسان است ولی فقط امکان انتقال قدرت بین دو محور هم قطر را میسر می سازد. این نوع کوپلینگ انتقال گشتاورهای کم را امکان پذیر می نماید.

 

 

2-1          کوپلینگ های فلنچی

سطح بیرونی بوش لغزشی مخروطی بوده و لذا در اثر محکم کردن پیچها اتصال فشاری و اصطکاک کافی بین فلنچ و بوش برقرار می گردد. دو محور در این اتصال بایستی کاملاً همراستا باشند ، مونتاژ و دمونتاژ این نوع کوپلینگ به آسانی انجام می شود.

2- کوپلینگ های انعطاف پذیر

کوپلینگ های انعطاف پذیر در انواع مختلف تجاری در دسترس هستند که هر یک برای شرایط کاری خاصی مناسب می باشند این نوع کوپلینگ ها می توانند عدم تقارن محوری شعاعی و زاویه ای را بین محور محرک و متحرک تحمل کنند.

کوپلینگهای انعطاف پذیر چهار وظیفه اصلی بر عهده دارند :

1-   انتقال گشتاور و سرعت از محرک به متحرک

2-   خنثی و مستهلک کردن ارتعاشات

3-   جبران نامیزانیها

4-   تاثیر بر فرکانس طبیعی سیستم

مقادیر ناهمراستایی مجاز کوپلینگها را باید از کاتالوگهای سرندگان بدست آورد ولی به طور کلی ناهمراستایی محوری مجاز در کوپلینگهای کوچک به in 005/0 و در کوپلینگهای بزرگ به in 03/0 محدود می باشد. حداکثر نامیزانی زاویه ای مجاز هم معمولاً در حدود  در نظر گرفته می شود.

با توجه به طیف وسیعی از انواع کوپلینگ های انعطاف پذیر ، وجود یک دسته بندی جامع که بتواند تمام انواع را در برگیرد در دسترس نیست. لذا از دسته بندی انواع کوپلینگهای انعطاف پذیر صرف نظر می شود.

1-2          کوپلینگ توربوفلکس 

این کوپلینگ از دو فلنچ و یک قطعه واسطه که اکثراً یک محور تو خالی می باشد تشکیل شده است. گشتاور چرخشی توسط واشر فنری منتقل می گردد و به کمک آن مقداری جابجایی محوری و زاویه ای میسر می شود. این نوع کوپلینگ توانایی تحمل نیروهای شعاعی زیاد ( مانند نیروهای اعمال شده به غلتکهای دستگاه نورد ) را دارا می باشد.

2-2   کوپلینگ شبکه ای ( فالک )

در این نوع کوپلینگ ، گشتاور از طریق یک فنر انعطاف پذیر به شیارهای فولادی روی کوپلینگ انتقال می یابدو بین دو نیمه کوپلینگ کمی فاصله وجود دارد که تا حدی نامیزانی محوری را جبران نموده و قابلیت تحمل بارهای ناگهانی سبک را بدلیل وجود فنریت پیچشی را بوجود می آورد. استفاده از محفظه و گریسکاری برای این کوپلینگ لازم است.

3-2          کوپلینگ های زنجیری  

کوپلینگ زنجیری از دو چرخ زنجیر تشکیل شده است که توسط یک زنجیر دو ردیفه به یکدیگر متصل می گردند بدلیل وجود کمی لقی بین اجزاء رنجیر ، این نوع کوپلینگ مقادیر کم نامیزانی زاویه ای ، محوری و شعاعی را تحمل می کند. جهت طولانی شدن عمر کاری ، دندانه های چرخ زنجیرها سخت کاری می گردد.

کوپلینگ بایستی گریسکاری شده و درون یک محفظه بسته پر از گریس قرارداده شود.

4-2  کوپلینگ های چرخ دنده ای

کوپلینگ چرخ دنده ای از دو توپی متصل به چرخ دنده تشکیل شده که یک بوش هزار خاری آنها را به یکدیگر متصل می کند. بدلیل وجود لقی بین دنده ها و همچنین خاصیت عملکرد کشویی امکان جذب نامیزانی های دورانی ، زاویه ای و محوری و محوری را دارا می باشد. قابلیت انتقال توانهای زیاد در مقایسه با سایر انواع کوپلینگ ( به نسبت ابعاد و وزن ) از مشخصات کوپلینگ چرخ دنده ای است. مقدار نامیزانی مجاز و ظرفیت انتقال بار به شکل و لقی  و زاویه فشار دنده ها بستگی دارد.

5-2  کوپلینگ فکی

کوپلینگ فکی یکی از متداولترین انواع کوپلینگهای انعطاف پذیر است که با استفاده از یک ضربه گیر الاستومری از انتقال ارتعاش و ضربه جلوگیری نموده و نامیزانیهای محور را جذب می نماید. این نوع کوپلینگ علیرغم حجم و ابعاد کم قابلیت انتقال توانهای بالا را دارا بوده و در طرحهای متنوع جهت کاربردهای عادی و اختصاصی استفاده می شود. مقدار سختی عضو الاستومری ، دمای کاری ، مقاومت شیمیایی و صلبیت پیچشی آن بسته به شرایط عملکرد تعیین می گردد.

معمولاً درجه حرارت کاری این نوع کوپلینگ در محدوده 40- تا 120 درجه سانتیگراد می باشد. توپی های کوپلینگهای فکی معمولاً از فولاد یا چدن ساخته می شوند.

6-2  کوپلینگ رولکس

اصلی ترین ویژگی این نوع کوپلینگ قابلیت انعطاف زیاد در جهت دورانی و جلوگیری از انتقال ضربه و ارتعاش می باشد.

7-2 آکارد ئونی

قابلیت تحمل نامیزانیهای زاویه ای و محوری و جذب ارتعاشات پیچشی مهمترین ویژگی این کوپلینگ است.

8-2 پارافلکس ( چرخی )

این نوع کوپلینگ ضمن تحمل ناهمراستایی محوری و زاویه ای قابلیت جذب ارتعاشات پیچشی را نیز دارا می باشد.

9-2          کوپلینگ متغیر زاویه ای ( یونیورسال)

کوپلینگهای انعطاف پذیر بسته به طرح و ساختمان داخلی می توانند ناهمراستایی زاویه ای را تا حدود 3 درجه و ناهمراستایی محوری را تا  تحمل کنند. ولی در برخی از کاربردها لازم است که دو محور ناهمراستایی بیشتری داشته باشند. در این گونه کاربردها از چهارشاخه یا اتصال یونیورسال استفاده می شود. مفصلهای یونیورسال در سرعتهای بسیار پائین امکان کار تحت زاویه  را نیز دارا هستند. ولی حداکثر زاویه قابل توصیه جهت سرعتهای بیشتر از rpm10 ،  می باشد. در سرعتهای بالاتر از rpm600 این زاویه به حداکثر  محدود می گردد.

 

کلاچ ها

کلاچ ها اجزائی از ماشین هستند که به هنگام نیاز، ارتباط یک محور را به محور دیگر برقرار و یا قطع می کنند و سرعت های ان دو محور را به یک سرعت تبدیل می نمایند کلاچ ها که در حین و زیر با قابل قطع و وصل می باشند همیشه از طریق اصطحکاک گشتاور را منتقل می نمایند برای ایجاد نیروی اصطحکاک لازم از نیروی مکانیکی، الکتریکی، هیدرولیکی و نپوهاتیکی استفاده می شوند. از این نوع کلاچ ها می توان کلاچ های یک صفحه ای، چند صفحه ای ، مخروطی و اتوماتیک قطع و وصل شوند. الکتریکی ( مغناطیسی ) و قطع و وصل شوند. هیدرولیکی و نپوهاتیکی را نام برد لازم به ذکر است کلاچ های قطع و وصل کننده ای نیز وجود دارند که گشتاور را از طریق اتصال فرعی منتقل می کنند ( مانند کلاچ های پنچه ای و دنده ای )  

1-   کلاچ های یک صفحه ای

یکی از متداول ترین کلاچ هایی که در صنعت اتومبیل سازی مورد استفاده قرار می گیرد کلاچ های یک صفحه ای هستند از مزایای این نوع کلاچ ها می توان به ساختار ساده، حجم کم، نیروی تماس زیاد، سایش لنت نسبتا کم و غیر حساس به سرعت های زیاد و شرایط محیطی نام برد.

2- کلاچ چند صفحه ای

یک کلاچ چند صفحه ای در شکل زیر نشان داده شده است. این نوع کلاچها از نظر ساختمان نظیر کلاچهای یک صفحه ای هستند با این تفاوت که در اینجا به بدنه محور محرک و همچنین به گلویی محور متحرک دیسکهای زیادی بسته شده اند. و از طرفی دیسکها بدون پوشش بوده و از فولادهای سخت کاری شده ساخته می شوند. این کلاچها به کلاچهای سینوسی نیز مشهورند و بین دیسکها ، ورقهای فنری b به کار برده می شوند. این فنرها باعث می شوند تا کلاچ تدریجاً و به راحتی قطع و وصل شود و در سطح تماس فشار زیادی بوجود آید. در کلاچهایی که سطوح تماس آنها از فولاد- فولاد معمولی ساخته شده است ، روغن در جدار بین دیسکها باعث چسبیدن آن دو به یکدیگر می شود. در نتیجه زمانیکه نیروی فشار را برداریم صفحات به راحتی از جدا نمی شوند. به همین دلیل وجود فنرها باعث جدا شدن آسان صفحات از یکدیگر می شود.

3- کلاچ های مخروطی :

در این نوع کلاچ نیروی اصطحکاک توسط درگیر شدن سطح جانبی یک مخروط خارجی با یک مخروط داخلی انجام می پذیرد.

4- کلاچ های اتوماتیک:

این نوع کلاچ های بدون استفاده از نیروی خارجی به طور اتوماتیک عمل قطع و وصل را انجام می دهند و معمولا به سه دسته تقسیم بندی می شوند:

الف) کلاچ های ایمنی

این کلاچ ها زمانی به کار می افتند که گشتاور چرخشی سیتم از گشتاور چرخشی تنظیم شده آن ها زیاد تر شود در این صورت ارتباط دو محور محرک و متحرک را به طور اتوماتیک قطع می کنند. لازم به ذکر است که این نوع کلاچ ها از اعمال گشتاورهای بیش از حد به سیتم جلوگیری می کند. این نوع کلاچ ها به8 صورت پینی، خشک، اصطحکاکی قابل تنظیم ساخته می شوند.

ب) کلاچ های سانتر یفیوژ

این نوع کلاچ ها در یک سرعت زاویه ای مشخص ارتباط بین دو محور محرک و متحرک را برقرار می سازند این نوع کلاچ ها با طرح های متنوع ساخته و وارد بازار می شوند.

ج) کلاچ های یک جهته

این نوع کلاچ ها حرکت را فقط در یک جهت با توجه به یک جهت چرخشی محور محرک انتقال می دهد

5- کلاچ های قطع و وصل شونده الکتریکی

این کلاچها به شکلهای یک صفحه ای ساخته می شوند. عامل اصلی عمل قطع و وصل حرکت ، انرژی حاصل از الکترومغناطیسی است. این کلاچها سریع قطع و وصل می شوند و از نظر ابعادی نسبتاً کوچک می باشند. اگرچه گران قیمت هستند ولی در سیستمهای کنترل اتوماتیک ، ماشینهای افزار و مخصوصاً در دستگاههای NC و CNC مصرف زیادی دارند. در این کلاچها برای فشاردادن صفحات به یکدیگر از نیروی الکترومغناطیسی استفاده می شود و دائماً به جریان برق احتیاج دارد. همچنین به دلیل جریان برق مداوم احتیاج به یک سیستم خنک کننده نیز می باشد. شکل زیر نمایی از یک نوع از این کلاچهاست.

6- کلاچ های قطع و وصل شونده هیدرولیکی و پنوماتیکی

سیستم ارتباط دهنده این نوع کلاچها پنوماتیکی و یا هیدرولیکی می باشند. و عمل ارتباط مکانیکی و از نوع اصطکاک است.

این کلاچ به راحتی قطع و وصل می شوند. چون تاثیر ناهمواریهای مهندسی و یا ساخت موجود در بین محورها را در موقع کار از بین می برند و همانند یک کلاچ لاستیکی عمل می کنند. از طرفی سیستم پنوماتیک آنها خیلی گران قیمت است. دیگر عیب آنها این است که فشار موجود در سطوح تماس در اثر گریز از مرکز و نیروی تولیدی آن کاهش یافته به طوریکه هرچه قدر سرعت زیاد شود فشار سطح کم می شود. کلاچهای هیدرولیکی ساختمانی مشابه کلاچهای پنوماتیکی دارند با این تفاوت که در آنها از روغن به جای گاز استفاده می شود.

جنس مصرفی برای کلاچ ها و ترمزها

تاحدود سال 1930 برای ایجاد اصطکاک از اجسامی چون چرم و چوب و چوب پنیر و غیره را به عنوان عصر اصطکاک در تماس با فلزاتی چون چدن ، فولاد ، برنج قرار می دادند هرچند این اجسام دارای ضریب اصطکاک قابل قبولی بودند ولی عواملی چون رطوبت و روغن و درجه حرارت بالا عملکرد صحیح آن ها را مختل می نمود.

از سال 1930 لنت هایی از ماده اولیه آسبست و پود فلزات ساخته شد که دارای سائیدگی کم و مقاومت در درجه حرارت بالا ، داشتن ضریب اصطکاکی بالا و بالاخره کمتر بودن اثر رطوبت و روغن استفاده می شود این لنت ها به چهار دسته تقسیم می شود.

1-   لنت با آسبست بافته شده

از الیاف آسبست حول سیمهایی از مس ، برنج ، سرب و قلع بافته شده و سپس در لاستیک ، نوعی آسفالت ( مخروطی از قیر و ذرات فلزی ) و یا اجسام دیگری پخته شده است که بعداً بمقدار زیادی فشرده می شود. آسبست بافته شده دارای عمر نسبتاً زیاد بود و مقدار معینی ارتجاعی می باشد.

2-   لنت با آسبست ریخته شده

از الیاف کوتاه آسبست که در جوار اجسام دیگری که بافته شده است ساخته می شود.

3-   لنت ریخته شده نیمه فلزی

تشکیل می شود از آسبست و پودر مس با اجسام سنتزی ( مصنوعی ) چسبان ، که معمولاً بضخامت  تا  اینچ برروی کفشکهای فلزی ریخته می شود. وجود پودر مس در آن باعث می شود که ضریب هدایت حرارتی بهتری نسبت به آسبست ریخته شده داشته باشد.

4-   لنت مالشی پودر فلزی

که از پودر فلزات مس ، قلع ، آهن ، سیلیسیم یا اجسامی از قبیل آلومین ، سیلیکا ، کاربیت و گرافیت درست می شود. که این اجسام دارای سائیدگی کم و بدین ترتیب می توان آنها را با ضخامت های آسبست ، سیلیکات کلسیم و منیزیمکم مانند 006/0 تا 010/0 اینچ بکار برد.

 

معرفی پارامترهای موثر در انتخاب و فاکتورهای مشخصه هر کوپلینگ

برای انتخاب کوپلینگ فقط اطلاع از مقدار بار و قطر محور کافی نیست بلکه می بایست کلیه شرایط حاکم بر انتقال قدرت مورد بررسی قرار گیرد. نحوه سوار شدن دو نیمه کوپلینگ ، مقدار نامیزانی محورها ، محدوده گشتاور انتقالی و دمای سیستم از جمله مواردی است که بایستی قبل از انتخاب کوپلینگ مورد توجه قرار گیرد.

قبل از انتخاب کوپلینگ موارد زیر را مشخص کنید :

1-   نوع سیستم محرک ( موتور الکتریکی ، موتور احتراقی ، تعداد سیلندر و ... )

2-   نوع سیستم متحرک ( فرم پمپ ، سنگ شکن ، مخلوط کن و .... )

3-   گشتاور نامی  ( در عملکرد پیوسته )

4-   گشتاور حداکثر  در شروع و خاتمه حرکت و هنگام مواجهه با اضافه بار )

5-   گشتاور ارتعاشی T ( میزان نوسان گشتاور حول مقدار نامی  )

6-   تعداد خاموش و روشن شدن در یک ساعت

7-   مقدار و نوع نامیزانی بین محور های محرک و متحرک ( زاویه ای ، محوری ، هردو )

8-   طریقه نصب کوپلینگ روی محور ( محور به محور ، محور به چرخ طیار ، انطباقی و .... )

9-   اندازه محور ( قطر محورهای محرک و متحرک )

10-                      دمای کاری

11-                      محدوده سرعت دوران ( محدوده های حداقل و حداکثر سرعت )

12-                      ضریب عملکرد ( ضریبی که بتواند اثر مجموعه پارامترهای فوق را اعمال نماید. )

مشخصه های کوپلینگ

پس از تعیین شرایط عملکرد سیستم ، می بایست ضمن مقایسه مشخصه های کوپلینگ با شرایط عملکرد ، بهترین کوپلینگ را انتخاب نمود و مشخصه های هر کوپلینگ عبارتند از :

1-   ظرفیت انتقال گشتاور ( Torque capcity )

2-   حداقل و حداکثر قطر سوراخ کوپلینگ ( Bore size )

3-   طریقه نصب (Type f mounting  )

4-   نامیزانی مجاز ( Permissiable misalignment )

5-   محدوده حداکثر سرعت مجاز ( Maximum speed range )

6-   انعطاف پذیری جسم ( Material fle   ility )

و قابلیت کار در محیطهای گرم روغنی و صلبیت پیچشی کافی.

انتخاب کوپلینگ

اولین قدم جهت انتخاب کوپلینگ برمبنای گشتاور انتقالی و قطر محور برداشته می شود. سپس مناسب بودن کوپلینگ جهت شرایط نصب مقدار نامیزانی مجاز و سرعت و دمای عملکرد کنترل می گردد. بررسی امکان بروز پدیده تشدید ( رزونانس ) نیز نباید فراموش شود. البته در مواردی که محرک موتور الکتریکی دارای عملکرد آرام و مقادیر بار کم باشد ، معمولاً نیازی به بررسی پدیده تشدید نخواهد بود. برای سیستمهایی که دارای حرکت آرام هستند. معمولاً ضریب عملکردی برابر 5/1 در نظر گرفته می شود که این ضریب در گشتاور نامی ضرب شده و گشتاور بدست آمده مبنای انتخاب کوپلینگ قرار خواهد گرفت.

به عنوان یک ملاک کلی ، کوپلینگ ها بایستی  سیکل دوران تحت حداکثر گشتاور در شرایطی که فرکانس نوسانات گشتاور بیش از 60 هرتز در ساعت نباشد تحمل کنند.

در ارتباط با نیروهای ارتعاشی ، کوپلینگ بگونه ای انتخاب می گردد که ارتعاشات وارد شده به آن عمدتاً جذب و مستهلک گردیده و به محور بعدی منتقل نشود. نرخ استهلاک ارتعاشات به میزان قابلیت جذب ارتعاش در عضو انعطاف پذیر وابسته است. جنسهای نرمتر از قابلیت جذب ارتعاش بیشتری برخوردارند.

در ارتباط با نامیزانی مجاز ، اولاً کوپلینگ باید بتواند بین دو محور که نسبت به یکدیگر نامیزانی دارند قرار گرفته و گشتاور را منتقل کند و ثانیاً در اثر قرار گرفتن بین دو محور نامیزان نیروی زیادی به آنها وارد ننماید.

فرکانس طبیعی یک سیستم با توجه به مقدار اینرسی و صلبیت آن تعیین می گردد. پس از طراحی و ساخت یک سیستم تغییر مقدار صلبیت آن کار دشواری است در حالیکه با انتخاب کوپلینگ مناسب و کنترل صلبیت سیستم به راحتی می توان فرکانس طبیعی را تغییر داد.

 

 

 

 

+نوشته شده در پنجشنبه نهم اردیبهشت 1389ساعت19:49توسط سیدمحمدسادات رسول ومسعودصنعتی نژاد | |

شهادت حضرت فاطمه را به تمام مسلمین تسلیت عرض می نماییم

صنعتی نژاد وسادات رسول

+نوشته شده در چهارشنبه هشتم اردیبهشت 1389ساعت19:1توسط سیدمحمدسادات رسول ومسعودصنعتی نژاد | |

سیستم های تعلیق خودرو چگونه کار می کنند؟ 

(ترجمه از  sidewinder )

هنگامی که مردم در مورد کارایی اتومبیل فکر می کنند، معمولاً کلماتی نظیر: اسب بخار، گشتاور و شتاب صفر تا صد به ذهن شان خطور می کند. ولی اگر راننده نتواند خودرو را کنترل کند، همه قدرتی که توسط موتور ایجاد می گردد، بدون استفاده است. به همین دلیل، مهندسین خودرو تقریباً از هنگامی که به فناوری موتورهای احتراق داخلی چهار زمانه دست پیدا کردند، توجهشان به سیستم تعلیق معطوف گردید.

 

 کار تعلیق خودرو، در به حداکثر رسانیدن اصطکاک بین لاستیک و سطح جاده، برای فراهم آوردن هدایت پایدار، دست فرمان خوب و اطمینان از اینکه سرنشینان در راحتی به سر می برند، خلاصه می شود. در این مقاله ما به کاوش چگونگی کارکرد سیستم تعلیق می پردازیم، و اینکه در طول سال ها چگونه متحول شده، و اینکه طراحی سیستم های تعلیق در آینده به کدام جهت سوق پیدا می کند.

اگر جاده ها کاملاً صاف بودند و بدون هیچ دست اندازی، ما نیازی به سیستم تعلیق نداشتیم. ولی جاده ها از صاف بودن فاصله زیادی دارند. حتی جاده هایی هم که به تازگی آسفالت شده اند، دارای ناصافی هایی جزئی هستند که می توانند بر چرخ های خودرو تاثیر بگذارند. این ناصافی ها  بر چرخ ها نیرو وارد می کنند و طبق قوانین حرکت نیوتن، همه نیروها جهت و اندازه دارند. یک دست انداز باعث می شود تا چرخ به صورت عمودی بر سطح جاده بالا و پایین برود. البته نیرو به بزرگی و کوچکی دست انداز بستگی دارد. در عین حال، چرخ خودرو هنگامی که از نا هم سطحی عبور می کند، یک شتاب عمودی را نیز به دست می آورد.

 بدون یک نظام مداخله کننده، همه انرژی عمودی چرخ، به شاسی که در همان جهت در حال حرکت است انتقال می یابد. در چنین شرایطی، ممکن است که چرخ ها به طور کامل ازجاده جدا شده و سپس، تحت نیروی جاذبه، مجدداً با سطح جاده برخورد کنند. چیزی که شما نیاز دارید، سیستمی است که انرژی چرخ را (که دارای شتاب عمودی است) در حال عبور از دست انداز، جذب کرده و به شاسی و بدنه اجازه دهد تا به راحتی حرکت کنند.

مطالعه نیروهای موجود در یک خودروی متحرک را دینامیک خودرو می نامند، و برای درک بهتر ضرورت وجود یک سیستم تعلیق، در وحله اول، نیاز به دانستن بعضی مفاهیم می باشد. اکثر مهندسان اتومبیل، دینامیک خودروی متحرک را از دو دیدگاه بررسی می کنند:

●      سواری – توانایی خودرو برای به نرمی عبور کردن از یک جاده پر دست انداز.

●     دست فرمان – امنیت خودرو در شتاب، ترمز و در پیچ ها و دورها.

 

این دو خصیصه را می توان به صورت عمیق تری در سه بخش مهم توضیح داد – ایزولاسیون جاده، نگهدارندگی جاده و پیچ. جدول زیر این اجزاء را توضیح داده و به این می پردازد که مهندسان چگونه سعی بر حل این مشکلات، به صورت جداگانه و بسته به نوع خودشان دارند:

 

بخش

تعریف

هدف

راه حل

 

ایزولاسیون جاده

توانایی خودرو برای جذب  یا جداسازی شوک جاده از قسمت سرنشین.

به بدنه خودرو این اجازه را بدهد تا به راحتی روی جاده های خراب حرکت کند.

انرژی را از دست اندازها گرفته و آن را آزاد کند، بی آن که بر خودرو تکان اضافی وارد سازد.

 

 

نگهدارندگی جاده

درجه ای که خودرو در آن تماس خود با سطح جاده را در طی تغییرات مختلف جهت و آن هم در یک خط مستقیم، تنظیم می نماید. (مثال: هنگامی که راننده ترمز می کند، وزن خودرو از لاستیک  های عقب به لاستیک های جلو منتقل می گردد. به خاطر نزدیک شدن نوک ماشین به سطح جاده، این نوع از حرکت را "شیرجه" می نامند. اثر مخالف –نشست- در هنگام شتاب گرفتن رخ می دهد، و وزن خودرو از لاستیک های جلو به عقب هدایت می شود.

 

 

نگهداشتن لاستیک ها در تماس با زمین، زیرا این اصطکاک بین لاستیک ها و جاده است که بر توانایی خودرو برای فرمان گرفتن، ترمز کردن و شتاب گرفتن تاثیر می گذارد.

 

 

به حداقل رسانیدن انتقال وزن  خودرو از طرفی به طرف دیگر و از جلو به عقب، که این انتقال وزن، از چسبندگی لاستیک ها به جاده می کاهد.

 

پیچ

 

توانایی یک خودرو برای طی یک مسیر پیچ دار.

به حداقل رساندن چرخش خودرو، که بر اثر وارد شدن نیروی گریز از مرکز به مرکز ثقل خودرو در حین دور زدن، و سپس بلند کردن یک طرف و پایین آوردن طرف مقابل.

 

انتقال وزن خودرو در هنگام دورزدن از طرف بالای خودرو به طرف پایین تر.

سیستم تعلیق یک خودرو، با تمام قطعات مختلفش، زمینه تمامی این راه حل ها را فراهم می آورد. بگذارید به قسمت هایی از یک سیستم تعلیق استاندارد نگاهی بیندازیم. کار را از شاسی شروع کرده و به ترتیب پایین می رویم و به اجزای مشخصی که سیستم تعلیق را تشکیل می دهند، می پردازیم.

 شاسی:

سیستم تعلیق یک خودرو در حقیقت بخشی از شاسی است که شامل تمام سیستم های مهمی که در زیر بدنه قرار دارند، می شود.

 

 این سیستم ها شامل بخش های زیر می شوند:

●   شاسی(فریم)- قطعه ساختاری و حامل بار که بدنه موتوردار خودرو را حمل می کند، پس در نتیجه توسط            سیستم تعلیق پشتیبانی می شود.

●   سیستم تعلیق – تشکیلاتی که وزن را تحمل می کند، شوک و فشار را جذب کرده و کاهش می دهد و تماس     لاستیک را کنترل می کند.

●   سیستم هدایت – مکانیزمی که راننده را قادر می سازد تا وسیله را هدایت کرده و جهت بدهد.

●  چرخ ها و لاستیک ها – اجزایی که حرکت خودرو را، با درگیری (اصطکاک) با سطح جاده، میسر می سازند. 

  

پس تعلیق، یکی از سیستم های اصلی در خودرو می باشد.

با مرور این شمای کلی در ذهن، نوبت پرداخت به سه قطعه بنیادین هر سیستم تعلیق می رسد: فنرها، کمک فنرها و میل موج گیر.

فنرها:

سیستم فنرهای امروزی بر پایه ی یک طرح از چهار طرح کلی می باشند:

● فنرهای پیچشی – رایج ترین نوع فنر بوده و در اصل یک میله فلزی سخت و محکم می باشد که حول یک محورپیچیده است. فنر پیچی ها باز و بسته می شوند تا جا به جایی چرخ ها را جذاب کنند.

● فنرهای تخت – این نوع  از فنر از لایه های مختلف فلزی تشکیل شده که به یکدیگر متصل می شوند تا به عنوان یک واحد عمل کنند.  فنرهای تخت، اول بار در کالسکه های اسب کش استفاده شدند و تا سال 1985 بر روی اکثر اتومبیل های آمریکایی به کار گرفته می شدند. امروزه نیز هنوز بر روی اکثر کامیون ها و خودروهای سنگین استفاده می شوند.

 

● میله های پیچشی – میله های پیچشی از خواص پیچش یک میله استیل استفاده می کند تا کارایی همانند فنر پیچشی را ایجاد کند. طریقه کارش به این صورت می باشد که یک سر میله به بدنه خودرو قلاب و متصل شده. انتهای دیگر به یک جناغ متصل است که مانند اهرمی عمل می کند که با زاویه º 90 نسبت به میله پیچشی حرکت می کند. هنگامی که چرخ با یک دست انداز برخورد می کند، حرکت عمودی به جناغ انتقال یافته و سپس، در طی عمل هم سطح سازی، به میله پیچشی می رسد. پس از آن میله پیچشی به دور محورش می پیچد تا نیروی فنری ایجاد نماید. خودروسازان اروپایی از این سیستم به صورت گسترده ای استفاده کردند، و نیز در ایالات متحده، پاکارد و کرایسلر در طول سال های 1950 تا 1960 این کار را انجام دادند.

 

● فنرهای بادی – فنر بادی که شامل یک محفظه سیلندری هوا می باشد، بین چرخ و بدنه خودرو قرار گرفته، و از خواص فشرده سازی هوا استفاه می کند تا لرزش های چرخ را بگیرد. طرح آن بیش از یک قرن قدمت دارد و می توان آن را در کالسکه های اسب کش یافت. فنرهای بادی در آن دوران از کیسه های چرمی پر از هوا درست می شدند، بسیار شبیه به کیسه های سازهای بادی؛ در سال 1930 فنرهای بادی چرمی-قالبی جایگزین این کیسه ها شدند.

  

با توجه به محلی که فنرها در خودرو قرار دارند – که همان بین چرخ ها و بدنه می باشد – مهندسان، اغلب صحبت درباره جرم معلق و جرم نامعلق (= جرمی که در تماس با جاده می باشد) را مناسب می دانند.

 فنرها: جرم معلق و نامعلق

جرم معلق، جرم خودرو بر فنرها است، حال آنکه جرم نامعلق به صورت جداگانه، جرم بین جاده و فنرهای سیستم تعلیق تعریف می شود. خشکی فنر، بر عکس العمل جرم معلق در هنگام رانندگی تاثیر می گذارد. خودروهایی که دارای جرم معلق ضعیفی هستند، نظیر خودروهای اشرافی (مانند خودروی شهری لینکلن) می توانند دست اندازها را به راحتی هضم کرده و یک سواری فوق العاده نرم و راحت را فراهم آورند؛ هر چند، این چنین خودرویی از شیرجه و نشست، در هنگام ترمز کردن و شتاب گرفتن رنج می برد و در سر پیچ ها و دورزدن ها، تمایل بیشتری به تجربه موج یا پیچش بدنه نشان می دهد. خودروهایی که دارای فنرهای سخت می باشند، مانند خودروهای اسپرت (مثل Mazda Miata) نسبت به جاده های پر دست انداز، خشونت بیشتری نشان می دهند. ولی این نوع اتومبیل، به خوبی حرکت بدنه را به حداقل می رساند؛ واین بدان معناست که آنها قابلیت سواری به صورت دیوانه وار را دارا هستند، حتی در سر پیچ ها.

 پس در حالی که فنرها به خودی خود، قطعاتی ساده به نظر می آیند، طراحی و به کارگیری آنها بر روی یک خودرو به منظور تعادل بین راحتی سرنشین و کنترل خودرو، فرآیند پیچیده ایست. و برای پیچیده تر ساختن مسئله، همین کافی است که فنرها به تنهایی نمی توانند یک سواری کاملاً نرم را فراهم آورند. چرا؟ زیرا آنها در جذب انرژی بسیار عالی عمل می کنند، ولی در رهاسازی اش به آن خوبی نیستند. قطعات دیگری، به عنوان کمک فنر نیاز هستند تا این کار به خوبی انجام پذیرد.

 

سیستم های تعلیق تاریخی

در قرن شانزدهم تلاشی در حل مشکل انتقال بد همه نیرو از دست انداز به گاری و واگن ها انجام گردید. آنها توسط چهار کیسه چرمی پر از باد که به چهار ستون شاسی متصل بودند، بدنه گاری را (که شبیه به یک میز وارونه بود) معلق نمودند، و چون بدنه گاری از شاسی معلق بود، سیستم، به عنوان یک "سیستم تعلیق" شناخته شد – اصطلاحی که امروزه نیز به انواع راه حل ها اطلاق می شود. سیستم "بدنه معلق"، یک نظام فنری کامل نبود، ولی چرخ ها و بدنه را قادر می ساخت تا به صورت آزاد حرکت کنند.

فنرهای نیمه بیضوی، که با نام "فنرهای گاری" نیز شناخته می شوند، به سرعت جایگزین تعلیق کیسه های چرمی شدند. فنرهای نیمه بیضوی به صورت عمومی در انواع واگن ها، گاری ها و ... استفاده می شدند. اغلب، هم بر روی اکسل عقب و هم بر روی اکسل جلو به کار می رفتند. هرچند، این سیستم باعث به وجود آمدن موج رو به جلو و عقب می شد و مرکز ثقل بسیار بالایی داشت.

با ورود و ازدیاد خودروهای موتوری، سیستم های فنری متفاوت و موثرتری گسترش یافتند که سواری را بر سرنشینان راحت تر می کردند.

+نوشته شده در سه شنبه هفتم اردیبهشت 1389ساعت16:24توسط سیدمحمدسادات رسول ومسعودصنعتی نژاد | |

 

 

 

 

تكنولوژي پيشرفته، عملكرد بهتر
سيستم سوخت رساني HEUI (سيستم پاشش سوخت با عملكرد هيدروليكي و كنترل الكترونيكي) يكي از مهمترين اختراعات قرن اخير در زمينه تكنولوژي موتورهاي ديزل است. HEUI بسياري از محدوديتهاي مكانيكي و معمول انژكتورهاي الكترونيكي را برداشته و استانداردهاي تازه اي براي مصرف بهينه و مطمئن سوخت و كنترل آلودگي معرفي مي نمايد. سيستم فوق العاده پيشرفته HEUI كه در حال حاضر استاندارد بكار رفته در گستره وسيعي از موتورها و ماشينهاي كاترپيلار است براي فعال ساختن انژكتورهاي سوخت بجاي انرژي مكانيكي از انرژي هيدروليك استفاده مي كند. سيستم HEUI همزمان با عملكرد ECM (مدول كنترل الكترونيكي) موجب كنترل بسيار دقيق اندازه و زمان بندي سوخت شده كه اين امر خود موجب  عملكرد بي نظير و اقتصادي موتور مي شود.

به خاطر نوع عملكرد، دقت و ساير قابليتهاي اثبات شده، انژكتورها در سيستم HEUI از اهميت بسياري برخوردارند.
سيستم سوخت HEUI
پاسخگوي نياز به آلودگي كمتر، مصرف اقتصادي تر و عملكرد بهتر
تكنولوژي انژكتورهاي HEUI باعث شده كه طرز تفكر مالكان، تكنسينها و اپراتورهاي ماشين آلات درباره نحوه عملكرد موتورهاي ديزل تغيير كند. كارآيي سيستم HEUI از يونيت انژكتورهاي مكانيكي و الكترونيكي معمول برتر بوده و ارزش بيشتري به سرمايه گذاري شما در ماشين آلات و موتورهاي  كاترپيلار مي دهد.
تنظيم دقيق فشار پاشش سوخت در هر سرعت موتور
در سيستم سوخت قديمي و معمول، تمام مسير سوخت زير فشار بالا قرار دارد. در سيستم HEUI تا زماني كه سوخت به داخل سيلندر تزريق  شود، سوخت در فشار پايين قرار مي گيرد و فشار سوخت بصورت هيدروليكي  از طريق ارسال سيگنال از ECM (مدول كنترل الكترونيكي) ايجاد مي شود.


فشار پاشش سوخت در سيستم سوخت رساني HEUI  ارتباطي به سرعت موتور ندارد.

HEUI فشار پاشش را بصورت الكترونيكي تنظيم  مي كند. اين توانايي بي نظير بدين معناست كه تنظيم فشار تزريق اصلاً به دور ميل لنگ وابسته نيست. بيشترين فشار پاشش سوخت را مي توان در سرعتهاي بالا بدست آورد كه در اين حالت بيشترين صرفه اقتصادي، كاهش دود و بازده بهتري نيز خواهيم داشت.
نگاهي دقيق به سيستم HEUI
سيستم HEUI داراي 4 قسمت است:
1. انژكتورHEUI : از انرژي هيدروليك روغن موتور تحت فشار قرار گرفته جهت پاشش استفاده مي كند (نه از انرژي مكانيكي  حاصل از ميل بادامك).
فشار پاشش  سوخت توسط فـشـار ورودي روغن    ( 3300PSIتا 800) كنترل شده در حالي كه مقدار پاشش سوخت  توسط ECM اندازه گيـري     مي شود.
2. (ECM) مدول كنترل الكترونيكي: اين كامپيوتر بسيار پيشرفته با دقت زياد ميزان پاشش سوخت و ساير سيستمهاي ديگر موتور را مديريت مي كند. سولونوئيد انژكتوري HEUI بوسيله علائم الكترونيكي توليد شده در ECM  تحريك مي شود. ريزپردازنده ECM  با استفاده از  نرم افزار مربوطه و پردازش اطلاعات وارد شده از سنسورهاي چندتايي و همچنين پارامترهاي كاربري اپراتور حداكثر عملكرد موتور را در هر شرايطي  فراهم مي كند.
3. پمپ روغن فشار بالا: پمپ روغن محوري  دبي متغير نصب شده روي سيستم، روغن ذخيره شده را سريعاٌ در زمان استارت سرد ارسال مي كند.
4. شير كنترل فشار فعال كننده انژكتور سوخت: اين شير بصورت الكترونيكي ميزان خروچي پمپ  روغن و فشار پاشش را تنظيم        مي كند.

در سيستم  HEUI هماهنگي و همكاري 4  قسمت اصلي موجب  دقت، اطمينان، نگهداري و تعمير آسان  مي شود. 


HEUI   اعتباري نو در سرمايه گذاري موتور و تجهيزات آن
عملكرد بهتر: موتورهاي مجهز به انژكتورهاي HEUI از عملكرد بهتري برخوردار بوده و مشكلات كار در ارتفاعات را كاهش داده‌اند.
مصرف سوخت كمتر: قابليت پاشش سوخت در  زواياي مختلف ميل لنگ در مقايسه با انژكتورهاي مكانيكي، مصرف سوخت را 7/2درصد كاهش مي‌دهد. حداقل مصرف سوخت به معني كاهش آلاينده هاي گازي و دود سفيد به هنگام استارت در هواي سرد است.
عملكرد بهينه: كنترل مقدار سوخت آزاد شده در  هنگام تأخير احتراق و زمان پاشش اصلي كه به نام منحني پاشش شناخته مي شود اين توانايي را براي سيستمهاي HEUI امكان پذير ساخته كه عملكردي غيروابسته به دور موتور دارا باشند. اين ويژگي، گرماي آزاد شده موتور را بهبود بخشيده و همچنين در كاهش آلودگي و سر و صدا مؤثر خواهد بود.
كاهش دود و آلاينده هاي خاص
از آنجايي كه عملكرد انژكتورهاي HEUI به سرعت موتور مرتبط نيست، مي توان در موارد بسياري در فشار تزريق بالا باقي ماند. (مي تواند در دامنه عملياتي  گسترده اي فشار پاشش بالايي را فراهم نمايد).
 تنظيم الكترونيكي اين فشارها موجب بهبود پاشش و عملكرد بهينه در دور كند موتور مي شود.
كاهش صداي موتور: ويژگي پاشش دوتايي باعث كنترل دقيق تر مصرف سوخت و كاهش صدا مي شود.  از جمله ساير مزايا مي توان به كاهش بارهاي ضربه اي در اثر  تضعيف ضربه به اجزاي اصلي و محرك نام برد.

انژكتورهاي بازيافتي  HEUI از لحاظ استحكام و كارآيي همانند  انژكتورهاي نو هستند.
كاترپيلار در فرآيند بازيافت با بهره گيري از تكنيكهاي Art-Salvage، كتاب راهنماي استفاده مجدد، سيستمهاي پيشرفته ساخت و كنترل دقيق كيفيت، اجزاي انژكتورهاي كاركرده را به همان كيفيت و بازده اوليه بر مي گرداند. يكي از مهمترين قسمتهاي اين فرآيند، آزمايش است. تكنسينهاي باتجربه و ماهر با  بكارگيري همان تجهيزات پيشرفته قادر به كنترل كيفيت اجزاي جديد خواهند بود. سرمايه گذاري زياد كاترپيلار برتكنيكهاي اندازه گيري حاكي از آن است كه  تمامي استانداردها دقيقاً  رعايت شده اند.
محافظت از سيستم HEUI با كمك فيلترهاي بسيار كارآمد كاترپيلار
فيلترهاي سوخت بسيار كارآمد كاترپيلار با دارا بودن مشخصه هاي مهمي مانند گردش    مارپيچي، جوشهاي آكريليك و تيوب مركزي غير فلزي، عمل محافظت از موتور در برابر ذرات آلاينده سوخت را   انجام مي دهند.
موتورهاي امروزي كاترپيلار در مقايسه با انواع قبلي  داراي توان بالاتر اسب بخار، بازده بيشتر و صرفه اقتصادي بيشتري هستند ولي اين اجزاي ظريف، بيشتر در معرض فرسايش و خطرات ناشي از آلودگي سيستم هستند. در حقيقت علت اصلي ايجاد نقص در سيستم سوخت رساني به علت وجود مواد فرساينده با ابعاد كوچكتر از 10 ميكرن  است.
فيلترهاي سوخت كاترپيلار با كمك فيلترهاي بسيار ريز، قادر به جداسازي 98درصد ذرات با قطر 2 ميكرن و يا حتي كوچكتر است. با جداسازي اكثر ذرات ريز، ميزان محافظت انژكتورها، پمپ ها و ساير اجزا سيستم سوخت به حداكثر خود مي رسد.

+نوشته شده در یکشنبه پنجم اردیبهشت 1389ساعت18:40توسط سیدمحمدسادات رسول ومسعودصنعتی نژاد | |

سيستم سوخت رساني زانتيا

عملگرها

اکنون که با سنسور های موجود در اتومبيل آشنا شدیم به معرفی عملگرها میپردازیم.

عملگرها قطعاتی هستند که دستورات صادره از ECU را اجرا مینمایند .

عمده وظیفه عملگرها تنظیم مقدار سوخت و هوا میباشد .

بطور کلی هر قطعه ای که مطابق با دستور ECU تحریک شده یا عمل نماید عملگر مینامیم .

 

•         رله دوبل                                                             main relay

•         پمپ بنزین                                                             fuel pump

•         پمپ هوا                                                                 air pump

•         کویل                                                                             coil

•         انژکتورها                                                                injectors

•         موتور پله ای                                                   stepper motor

•         شیر برقی کنیستر                                   canister electro valve

 

 

رله دوبل

•         این رله کلید قطع و وصل برق قطعات زیر میباشد که این کار را با فرمان ECU انجام میدهد.

در مرحله اول:

•         برق گرمکن سنسورهای اکسیژن .

•         برق 12+ ولت انژکتورها .

•         برق شیر برقی کنیستر .

در مرحله دوم :

•         برق کویل .

•         برق پمپ بنزین .

 

پس خرابی رله دوبل بطور کلی مانع روشن شدن اتومبيل میگردد . جهت بررسی عملکرد آن بطور خلاصه میتوان به صدای تیکِ عمل کردن آن در هنگام باز کردن سوئیچ اشاره کرد .

چنانچه سوئیچ باز شود رله دوبل برق را به نقاط گفته شده وصل میکند و اگر تا 3 ثانیه اتومبيل روشن نشود رله مجدداً برق را قطع میکند .

چنانچه سیستم ضد سرقت اتومبيل در شناسائی کلید دچار مشکل باشد رله دوبل عمل نخواهد کرد زیرا  ECU  فرمان عمل کردن را به آن نمی دهد .

چنانچه فیوز f 7 جعبه فیوز داخل موتور که تامین کننده برق رله دوبل است سوخته باشد باز هم رله عمل نمی کند .

چنانچه سوئیچ اینرسی در اثر ضربه وارده  به آن عمل کرده باشد باز هم رله دوبل( در مرحله دوم ) عمل نخواهد کرد .

نکته : سوکت رله دوبل و ECU نسبت به آب حساس است و در صورت نفوذ آب به داخل محفظه ECU احتمال نامنظم کارکردن و یا خاموش شدن اتومبيل زیاد است .

 

 

 

پمپ بنزین

پمپ بنزین و درجه آن در داخل باک نصب شده است. سوکت آن دارای 4 پایه میباشد که پایه های 2و4 مربوط به موتور پمپ و 1و3 مربوط به درجه نشانگر سطح بنزین داخل باک است . جهت انجام آزمایش و تست عملکرد آن میتوان پمپ بنزین را با دستگاه عیب یاب بطور جداگانه راه اندازی کرد .

پمپ بنزین را با ابزار مخصوص مربوطه باز میکنند .

در هنگام جازدن به خار و جهت آن توجه نمایید .

فیوز f 9 جعبه فیوز داخل موتور تامین کننده برق پمپ بنزین میباشد .

کثیفی فیلتر بنزین (علیرغم وجود سوپاپ اطمینان در خود پمپ) باعث وارد آمدن صدمه به پمپ میگردد .

 

 

پمپ هوا

پمپ هوا وظیفه تزریق هوای تازه پشت سوپاپ دود در مواقعی که موتور سرد است را بعهده دارد .

هنگامیکه موتور سرد است بدلیل غنی بودن سوخت و احتراق ناقص در موتور هیدروکربنهای نسوخته در محصولات احتراق زیاد میباشند ، در بدو خروج این گازها از سیلندر ، گازها هنوز دمای خود را از دست نداده اند لذا در معرض جریان هوای تازه پمپ شده میسوزند و به این ترتیب از رسوب دوده در کاتالیزور جلوگیری میگردد . جهت راه اندازی این پمپ ECU برق + به پایه 2 رله پمپ هوا (واقع در جعبه فیوز داخل موتور) وصل کرده وبدین صورت پمپ راه اندازی میگردد .سوکت آن مشکی 2 سیمه میباشد .

 

کویل

کویل بصورت یک پارچه برروی سرسیلندر بالای شمعها نصب شده است و دارای یک سوکت مشکی 4 پایه ای است ، پایه 4 برق 12+ ارسالی از رله دوبل ، پایه 1و2 به ترتیب مربوط به سیگنال منفی جرقه 1-4 و 2-3 ارسالی از ECU و پایه 3 مربوط به خازن میباشد .

جرقه کویل ، دوبل است یعنی سیلندرهای 1،4 و 2،3 با هم بطور همزمان جرقه دارند. که یکی از جرقه ها انفجار را انجام میدهد و دیگری هرز میرود .

لازمست که شدت جرقه متناسب با دور موتور متغییر باشد، لذا زمان شارژ کویل بر حسب میلی ثانیه توسط ECU (زمان وصل بودن منفی از ECU به کویل) محاسبه و اعمال میگردد .

 

انژکتورها

•         انژکتورها شیرهای برقی هستند که به فرمان ECU ( اتصال ولتاژ منفی یا بدنه به پایه شماره 2 انژکتورها) برای مدت محاسبه شده اقدام به پاشش سوخت تحت فشار به پشت سوپاپ هوا مینمایند .

•         سوکت خاکستری رنگ 2 پایه دارند که پایه 1 آنها از رله دوبل برق 12+ گرفته و پایه 2 آنها از ECU فرمان پاشش را بصورت پالس منفی میگیرد .

•         مقاومت سیم پیچ انژکتورها حدود 12 تا 14 اهم است .

•         انژکتورها ممکن است که بسوزند یا نشتی بیش از حد داشته باشند که در صورت اول موتور 3 کار میکند وچنانچه بیش از یک انژکتور سوخته باشد موتور روشن نمی شود و در صورت دوم موتور غنی کار میکند .

 

 

موتور پله ای

وظیفه تنظیم هوای دور آرام را به عده دارد و در سایر مواقع ( در دورهای بالا) در غنی یا رقیق کردن مخلوط نقش دارد .

محل نصب آن در اطاقک شتاب بوده و دارای سوکت مشکی 4 پایه ای میباشد مقاومت پایه های 1-4 و2-3 در حدود 50 تا 52 اهم میباشد .

این موتور با پالس کار میکند . از اتصال برق مستقیم 12 ولت به آن خودداری نمائید .

لازمست که پس از تعویض ، موتور جدید را کالیبره نمائید .

این عمل با یک بار ACTUATOR TEST یا باز نمودن سوئیچ به مدت 10 ثانیه انجام میگردد .

 

خرابی های موتور پله ای

در صورت از کارافتادن موتور پله ای اتومبيل در دور آرام خاموش میشود .

در صورت کثیف شدن یا گیر کردن پیستونِ آن نوسان دور موتور در حالت آرام بروز مینماید .

همچنین نوسان دور موتور و یکی از دلایل خاموش شدن موتور هنگام کولر گرفتن گیر کردن و کثیفی موتور پله ای میباشد .

از دستکاری نمودن پیستون و حرکت دادن آن با دست خودداری نمائید .

برای تمیز کاری نوک پیستون و نشیمنگاه آن میتوانید از بنزین یا اسپری های مخصوص این کار استفاده نمائید .

 

شیر برقی کنیستر

شیر برقی کنیستر وظیفه بازو بسته کردن مسیر کنیستر به منیفولد هوا را در مواقع لزوم بعهده دارد .

با بازو بسته شدن متناوب شیر بخارات بنزین انباشته شده در کنیستر وارد منیفولد شده و در موتور میسوزد .

 

آشنائی با عملکرد اجزاء در سیستم

 

کنیستر

کنیستر محفظه ایست که بخارات بنزین جمع شده در باک را در خود ذخیره مینماید و از انتشار آن در محیط جلوگیری میکند .

همانطور که میدانید بنزین یکی از جدی ترین آلاینده های محیط زیست میباشد .

بخارات بنزین جمع شده در کنیستر در هنگام روشن شدن اتومبيل و بیشتر در هنگام کارکرد دور آرام موتور به فرمان ECU توسط شیر برقی به منیفولد هدایت شده و سرانجام در موتور میسوزد . به این ترتیب از انتشار بخار بنزین آلاینده در محیط زیست جلوگیری میگردد .

پاشش

پاشش سوخت در سیستم های انژکتوری و زمان صحیح جرقه دو عامل مهم و هدف اصلی هر سیستم انژکتور میباشد.

حال میخواهیم به عوامل موثر درتعیین مقدار پاشش بپردازیم .

 

هدف اصلی

نسبت سوخت به هوا

1:14.7

 

نسبت 1 به 7/14 نسبت استویکیو متریک و ایده آل ترین نسبت جهت احتراق مناسب میباشد ،ولی بر حسب نیاز گاهی در موقع شتاب گیری نسبت غنی تر و گاهی در موقع برداشتن پا از روی پدال نسبت رقیق تر مورد نیاز است .

برای تهیه نسبت تعیین شده F/A توسط ECU به اطلاعات زیر نیاز میباشد .

1- مشخصات بنزین .

2- مشخصات هوا .

 

مشخصات بنزین از قبیل حجم و جرم حجمی و ... نسبتاً ثابت است .

اما برای تعیین مشخصات هوا به اطلاعات محیطی مانند دما و فشار هوا نیاز میباشد زیرا مقدار هوا و جرم حجمی و حجم آن به پارامترهای ذکر شده بستگی دارد .

برای محاسبه حجم هوای ورودی به موتور ECU از اطلاعات سنسور دریچه گاز و فشار هوا و دمای هوا و دور موتور استفاده میکند .

پس از محاسبۀ حجم هوای ورودی به موتور (در این مرحله مخرج کسر معلوم گردیده) نوبت به تعیین سوخت مورد نیاز یعنیengine load  میرسد .

 

فشار سوخت موجود در ریل سوخت در حد 3 بار ثابت است پس با ثابت بودن فشار پاشش فقط لازم است زمان پاشش تعیین گردد که زمان پاشش پس از محاسبه در ECU از طریق پالس ارسالی به انژکتورها اعمال میگردد .

 

برای جلوگیری از صدمات احتمالی ناشی از دور موتور بیش از حد ECU  پاشش سوخت را در دور 6740 دور در دقیقه قطع میکند تا با این کار دور موتور کنترل شود و از حد مجاز فرا تر نرود .به این عمل cut off میگویند.

علاوه بر این برای جلوگیری از وارد آمدن فشار بیش از حد به موتور در دور موتور زیر 800 دور و بالای 6000 دور سیستم تهویه مطبوع توسط ECU از کار می افتد .

 

جرقه

هدف دیگر سیستم انژکتور تعیین زمان دقیق جرقه است .

زمان جرقه در ایجاد یک احتراق صحیح سهم مهمی دارد .

ویژگی یک جرقه خوب :

1- قدرت کافی (ولتاژ مناسب).

2- زمان مناسب .

قدرت جرقه با توجه به دور موتور توسط ECU با تعیین زمان شارژ کویل تامین میشود .

 

بهترین زمان

زمانیست که احتراق را در چند درجه (بسته به طراحی محفظه احتراق) بعد از مرگ بالا کامل نماید .

چنانچه احتراق زودتر ( قبل از TDC  یا دقیقاً در هنگام آن) کامل شود پدیدۀ کوبش رخ میدهد که باعث گرم شدن موتور وکاهش کشش آن و وارد شدن فشار بیش از حد به پیستون میگردد .

در اینجا به اهمیت آوانس یا ریتارد پی میبریم .

 

عوامل تعیین کننده

هر عاملی که در سرعت سوختن سوخت در سیلندر اثر گذار باشد تعیین کننده زمان جرقه نیز میباشد :

-          نسبت سوخت به هوا .

-          دمای محفظه احتراق (یا دمای هوا).

-          فشار مخلوط در محفظه احتراق .

-          دور موتور .

  

با توجه به مطالب ذکر شده . قطعات زیر در نسبت سوخت به هوا نقش دارند: 

-          رگلاتور سوخت .

-           انژکتورها .

-           سنسور دمای آب .

-           سنسور فشار و دمای هوا .

-           سنسور TPS .

-           سنسورهای اکسیژن .

-           موتور پله ای .

-           فیلتر هوا و بنزین .

-          دریچه گاز .

-           منیفولد هوا ( از نظر نشتی).

-           برنامۀ ECU .

-           شیر برقی کنیستر .

 

قطعات زیر در جرقه نقش دارند

-          سنسور فشار و دمای هوا .

-          سنسور دمای آب .

-          دور موتور .

-          سنسور ضربه .

-          فیلتر هوا .

-          نوع سوخت .

-          شمع ها .

-          کویل و زمان شارژ آن .

-سنسور موقعيت ميل بادامك

 

+نوشته شده در شنبه چهارم اردیبهشت 1389ساعت19:53توسط سیدمحمدسادات رسول ومسعودصنعتی نژاد | |